• Title, Summary, Keyword: 60 GHz Band

Search Result 205, Processing Time 0.04 seconds

Frequency Band Selection for WLAN Using Multiple Bands of 5 GHz/60 GHz (5 GHz/60 GHz 다중대역을 사용하는 WLAN을 위한 대역이동 결정 기법)

  • Jeong, Tae Hun;Jeong, Dong Geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.718-728
    • /
    • 2014
  • The multi-band wireless local area network (WLAN) using 60 GHz band and the lower band (typically 2.4 GHz/5 GHz band) can support the very high data rate in short-distance communication using 60 GHz band and the long-distance communication using the lower band. For heightening the efficiency of multi-band WLAN, an band selection scheme is a necessity. In this paper, we propose an effective frequency band selection scheme for multi-band WLANs. By using computer simulation with NS-3, we show the performance of the proposed schemes when the stations suffer from the human blockage and the log-normal shadowing.

The Development of the Temperature Compensation Equipment to minimize Error in the Wireless Transmission System at 60GHz Band (60GHz대역 무선통신장애 해결을 위한 온도보상장치 개발)

  • Myung, Byung-Soo;Ku, Seong-Deag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • Usually, propagation attenuation of millimeter wave occurs by rainfall, snowfall, temperature, effect of pressure of air. In 60GHz wave band wireless communication network, temperature change becomes big factor of propagation loss department. Also, temperature change causes disturbance of 60GHz frequency at transceiver. In this study, we used 60GHz transceiver and found propagation loss of wireless path and operating frequency disturbance characteristics. In transceiver that there is no temperature compensated device, operating frequency of TX changed by 60.865GHz at temperature of $-5^{\circ}C$, and appeared by 60.730GHz when is $50^{\circ}C$. Therefore, operating frequency change width by temperature change are about 100MHz, greatly. But, in transceiver that there is temperature compensated device, operating frequency of TX changed by 60.830GHz at temperature of $-5^{\circ}C$, and appeared by 60.710GHz when is $50^{\circ}C$. Therefore, operating frequency change width by temperature change are about 20MHz. According to these result, we constructed between buildings examination wireless site for point to point wireless communication using 60GHz band transceivers who have do temperature compensated device, and investigated data transmission characteristics about ambient temperature change. Therefore, if use transceiver that have temperature compensated device, may overcome the wireless transmission error in 60GHz band wireless communication LAN networks despite of ambient temperature change.

  • PDF

Studies on the High-gain Low Noise Amplifier for 60 GHz Wireless Local Area Network (60 GHz 무선 LAN의 응용을 위한 고이득 저잡음 증폭기에 관한 연구)

  • 조창식;안단;이성대;백태종;진진만;최석규;김삼동;이진구
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.21-27
    • /
    • 2004
  • In this paper, millimeter-wave monolithic integrated circuit(MIMIC) low noise amplifier(LNA) for V-band, which is applicable to 60 GHz wireless local area network(WLAN), was fabricated using the high performance 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate pseudomorphic high electron mobility transistor(PHEMT). The DC characteristics of PHEMT are drain saturation current density(Idss) of 450 mA/mm and maximum transconductance(gm, max) of 363.6 mS/mm. The RF characteristics were obtained the current gain cut-off frequency(fT) of 113 GHz and the maximum oscillation frequency(fmax) of 180 GHz. V-band MIMIC LNA was designed using active and passive device library, which is composed of 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate PHEMT and coplanar waveguide(CPW) technology. The designed V-band MIMIC LNA was fabricated using integrated unit processes of active and passive device. The measured results of V-band MIMIC LNA are shown S21 gain of 21.3 dB, S11 of -10.6 dB at 60 GHz and S22 of -29.7 dB at 62.5 GHz. The measured result of V-band MIMIC LNA was shown noise figure (NF) of 4.23 dB at 60 GHz.

A Research on Performance Improvement of Wireless LAN System (무선 LAN 시스템 성능개선에 관한 연구)

  • Cho, Juphil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1028-1033
    • /
    • 2014
  • We investigate the OFDM-based wireless LAN systems operating in the 60 GHz frequency band as part of the fourth-generation (4G) systems. The 60 GHz band is of much interest since this is the band in which a massive amount of spectral space has been allocated worldwide for dense wireless local communications. This paper gives an overview of 60 GHz band channel characteristics and an effect on phase noise. The performance of OFDM system is severely degraded by the local oscillator phase noise, which causes both common phase error and inter-carrier interference. In this paper, we apply phase noise suppression (PNS) algorithm that is easy for implementation to OFDM based 60 GHz wireless LAN system and analyze the SER performance. In case of using the PNS algorithm, SER performance is improved about 6 dB, 7.5 dB, respectively in 16, 64-QAM.

Phase Noise Suppression Algorithm for OFDM-based 60 GHz WLANs (OFDM 기반의 60GHz 무선랜 전송방식에서 위상잡음 제거)

  • Roh Ho-Jin;Ahn Kyung seung;Lee Woo-Young;Baik Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.3-6
    • /
    • 2004
  • This paper. we investigate the OFDM-based wireless LAN systems operating in the 60 GHz frequency band as part of the fourth-generation (4G) systems. The 60 GHz band is of much interest since this is the band in which a massive amount of spectral space (5 GHz) has been allocated worldwide for dense wireless local communications. This paper gives an overview of 60 GHz indoor wireless channel characteristics and an effect on phase noise. The performance of OFDM system is severely degraded by the local oscillator phase noise, which causes both common phase error and inter-carrier interference. We provide the exact analysis of the phase noise effect on the OFDM system.

  • PDF

DEVELOPMENT OF WIDEBAND TUNABLE E-BAND(60-70 GHz) GUNN OSCILLATOR (광대역 특성을 갖는 E-band(60-70 GHz) Gunn 발진기 제작)

  • 김현주;한석태;김태성;김용기
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.221-232
    • /
    • 2000
  • A Gunn waveguide-oscillator, mechanically tunable from 60 to 70 GHz, has been developed for use as a local oscillator(LO) is millimeter radio telescope. Disc size, post size and characteristics of Gunn diode have an effect on the frequency tuning characteristics of Gunn oscillator. In this paper we report experimental results and design criteria for a wideband tunable Gunn oscillator. The developed Gunn oscillator has been used in the 100/150 GHz band dual channel receiver for the Taeduk Radio Astronomy Observatory.

  • PDF

Design and Implementation of UWB Antenna with Dual Band Rejection Characteristics (이중 대역저지 특성을 가지는 UWB 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.413-419
    • /
    • 2018
  • An UWB(Ultra Wide Band) antenna with band rejection characteristics is designed and implemented. A planar radiation patch with slot, parasitic elements on both sides of strip and ground plane on back side consist the proposed antenna. The slot in the radiation patch and parasitic elements contribute corresponding bands rejection characteristics. The slot contributes for WiMAX(World interoperability for Microwave Access, 3.30~3.70 GHz) band rejection and parasitic elements contribute for X-Band(7.25~8.395 GHz) rejection. Ansoft's HFSS(High Frequency Structure Simulator) was used to design the proposed antenna and performance simulations. Simulation result showed VSWR(Voltage Standing Wave Ratio) less than 2.0 for UWB band except for dual rejection bands of 3.30~3.86 GHz and 7.21~8.39 GHz. And VSWR measurement result for the implemented antenna shows less than 2.0 for 3.10~10.60 GHz band except dual rejection bands of 3.25~3.71 GHz and 7.25~8.46 GHz.

Phase Noise Analysis and Suppression Algorithm for OFDM-Based 60GHz WLANs (OFDM 기반의 60GHz WLAN을 위한 위상잡음 해석과 위상잡음 억제 알고리즘)

  • Kim Han-Kyong;Ahn Kyung-Seung;Baik Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1248-1255
    • /
    • 2005
  • We investigate the OFDM-based wireless LAN systems operating in the 60 GHz frequency band as part of the fourth-generation (4G) systems. The 60 GHz band is of much interest since this is the band in which a massive amount of spectral space has been allocated worldwide for dense wireless local communications. This paper gives an overview of 60 GHz bandchannel characteristics and an effect on phase noise. The performance of OFDM system is severely degraded by the local oscillator phase noise, which causes both common phase error and inter-carrier interference. In this paper, we apply phase noise suppression (PNS) algorithm that is easy for implementation to OFDM based 60 GHz wireless LAM system and analyze the SER performance. In case of using the PNS algorithm, SER performance is improved about 6dB, 7.5dB, respectively in 16, 64-QAM.

The Implementation of UWB and 60GHz Band Wireless Communication Technology for Wireless Home Network and Their Market Prospect (무선 홈네트워크 구현을 위한 UWB와 60GHz 대역 무선 통신 기술의 활용방안과 시장전망)

  • Hong, Seok-Soo;Park, Jong-Hun;Lee, Dong-Joo;Lee, Jae-Sup;Hong, Jung-Wan;Lie, Chang-Hoon
    • The Journal of Society for e-Business Studies
    • /
    • v.13 no.2
    • /
    • pp.195-212
    • /
    • 2008
  • The demand of wireless communication system is increasing due to the development of computers and other digital media appliances. In particular, new wireless communication technology is necessary for implementation of home network since a lot of data transmission is occurred. Recently, two wireless communication technologies, Ultra Wide Band(UWB) and 60GHz band wireless communication technology, have being developed for high-speed data transmission and Wireless Personal Area Network(WPAN). In this paper, we study the present development condition of these two technologies and a role of them in home network. We also suggest the method to implement the home network using all wireless communication technologies. At the end, we outlook the market of WPAN and High Definition Multimedia Interface(HDMI).

  • PDF

Design and Implementation of UWB Antenna with Band Rejection Characteristics (대역저지 특성을 갖는 초광대역 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon;Yu, Jae Seong;Oh, Hee Oun
    • The Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • In this paper, we designed and implemented an ultra wideband(UWB) antenna with band rejection characteristics. The proposed antenna consists of a planar radiation patch with slots and ground planes on both sides. Due to the slots in the radiation patch, the antenna shows band rejection characteristics. U-type slot contributes for wireless local area network(WLAN, 5.15~5.825 GHz) band rejection and n-type slot contributes for X-Band(7.25~8.395 GHz) band rejection. To make voltage standing wave ratio(VSWR) less than 2.0 for UWB frequency band except rejection bands, the shapes of planar radiation patch and ground plane was modified. The Ansoft 's high frequency structure simulator(HFSS) was used for the design process and simulations of the proposed antenna. The simulated antenna showed VSWR less than 2.0 for all UWB band excepts for dual rejection bands of 5.15 ~ 5.94 GHz and 7.02 ~ 8.45 GHz. And measured VSWR for the implemented antenna is less than 2.0 for all UWB band of 3.10~10.60 GHz excluding dual rejection bands of 5.12~5.95 GHz and 7.20~8.58 GHz.