The coupling of two semiconducting materials is an efficient method to improve photocatalytic activity via the suppression of recombination of electron-hole pairs. In particular, the coupling between two different phases of $TiO_2$, i.e., anatase and rutile, is particularly attractive for photocatalytic activity improvement of rutile $TiO_2$ because these coupled $TiO_2$ powders can retain the benefits of $TiO_2$, one of the best photocatalysts. In this study, anatase $TiO_2$ nanoparticles are synthesized and coupled on the surface of rutile $TiO_2$ powders using a microemulsion method and heat treatment. Triton X-100, as a surfactant, is used to suppress the aggregation of anatase $TiO_2$ nanoparticles and disperse anatase $TiO_2$ nanoparticles uniformly on the surface of rutile $TiO_2$ powders. Rutile $TiO_2$ powders coupled with anatase $TiO_2$ nanoparticles are successfully prepared. Additionally, we compare the photocatalytic activity of these rutile-anatase coupled $TiO_2$ powders under ultraviolet (UV) light and demonstrate that the reason for the improvement of photocatalytic activity is microstructural.