• Title, Summary, Keyword: Anogeissus latifolia

Search Result 4, Processing Time 0.043 seconds

Change in Community Composition and Soil Carbon Stock Along Transitional Boundary in a Sub-Tropical Forest of Garhwal Himalaya

  • Kumar, Munesh;Kumar, Manish;Saleem, Sajid;Prasad, Sunil;Rajwar, G.S.
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.3
    • /
    • pp.194-199
    • /
    • 2013
  • The aim of the present study was to assess the effect of transitional boundary on community composition and soil carbon stock. Five vegetation types were recognized horizontally along the transitional strip based on the dominance of tree species i.e., Pure Anogeissus latifolia forest (P.AL), mixed Pinus roxburghii and Lannea coromandelica forest (M.PR&LC), pure Pinus roxburghii forest (P.PR), mixed Pinus roxburghii and Lannea coromandelica (M.PR&LC) and pure Anogeissus latifolia forest (P.AL). The results revealed that Anogeissus latifolia was reported dominant tree in the outer transitional boundaries of the forest, which reduced dominance of trees towards middle where Pinus roxburghii was found dominant. The soil carbon stock was reported higher in the Anogeissus latifolia dominant forest and reduced with the dominance of Pinus roxburghii in the middle site. Both the species are growing close to one another and competing for survival, but the aggressive nature of Anogeissus latifolia particular in this region may change new growth of Pinus roxburghii and will enhance soil carbon stock. But high anthropogenic pressure on Anogeissus latifolia tree species could be limited chance to further its flourish.

Activity Guided Isolation of Antioxidant Tannoid Principles from Anogeissus latifolia

  • Govindarajan, Raghavan;Vijayakumar, Madhavan;Shirwaikar, Annie;Rawat, Ajay Kumar Singh;Mehrotra, Shanta;Pushpangadan, Palpu
    • Natural Product Sciences
    • /
    • v.11 no.3
    • /
    • pp.174-178
    • /
    • 2005
  • Oxidative stress is an important causative factor in several human chronic diseases, such as atherosclerosis, cardiovascular disorders, mutagenesis, cancer, several neurodegenerative disorders, and the aging process. Phenolics and tannins are reported to be good antioxidants. Anogeissus latifolia (Combretaceae) bark has been used in the Indian traditional systems of medicine for curing a variety of ailments, but scientific validation is not available till date. Hence the present study was undertaken to isolate antioxidant compounds by activity-guided isolation. Inhibtion of diphenyl picryl hydrazyl (DPPH) and Xanthine oxidase along with photochemiluminescence assay were used as bioassay for antioxidant activity. Activity guided isolation was carried out using silica column and the compounds were quantified using HPLC. Ethyl acetate and butanol fraction exhibited potent antioxidant activity. Bioassay-guided isolation led to isolation of ellagic acid (1) and dimethyl ellagic acid (2) as the main active compounds, which along with gallic acid were quantified by HPLC. Thus we conclude that these three major tannoid principles present in A. latifolia, are responsible for the antioxidant potential and possibly their therapeutic potential.

In Vitro Anticancer Activities of Anogeissus latifolia, Terminalia bellerica, Acacia catechu and Moringa oleiferna Indian Plants

  • Diab, Kawthar AE;Guru, Santosh Kumar;Bhushan, Shashi;Saxena, Ajit K
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6423-6428
    • /
    • 2015
  • The present study was designed to evaluate in vitro anti-proliferative potential of extracts from four Indian medicinal plants, namely Anogeissus latifolia, Terminalia bellerica, Acacia catechu and Moringa oleiferna. Their cytotoxicity was tested in nine human cancer cell lines, including cancers of lung (A549), prostate (PC-3), breast (T47D and MCF-7), colon (HCT-16 and Colo-205) and leukemia (THP-1, HL-60 and K562) by using SRB and MTT assays. The findings showed that the selected plant extracts inhibited the cell proliferation of nine human cancer cell lines in a concentration dependent manner. The extracts inhibited cell viability of leukemia HL-60 and K562 cells by blocking G0/G1 phase of the cell cycle. Interestingly, A. catechu extract at $100{\mu}g/mL$ induced G2/M arrest in K562 cells. DNA fragmentation analysis displayed the appearance of a smear pattern of cell necrosis upon agarose gel electrophoresis after incubation of HL-60 cells with these extracts for 24h.

Seasonal Variations in Tannin Profile of Tree Leaves

  • Rana, K.K.;Wadhwa, M.;Bakshi, M.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1134-1138
    • /
    • 2006
  • Forest tree leaves (12 different species) of semi hilly arid region of Punjab State were collected at 30-day interval throughout the year to assess the seasonal variations in tannin profile. Tannins were extracted and fractionated from fat free samples and data were analyzed statistically by $12{\times}12$ factorial design. The leaves of Anogeissus latifolia had the highest (p<0.05) concentration of total phenols (17.4%), net (15.9%) and hydrolysable (16.9%) tannins, followed by leaves of Acacia nilotica. Majority of the tree leaves selected had moderate levels (2-5%) of net tannins. Leaves of Carrisa had the highest (p<0.05) concentration of condensed tannins (CT), whereas the leaves of Anogeissus had the lowest (p<0.05) concentration of condensed tannins. The protein precipitable phenols (PPP) corresponded well with the net tannin content present in different tree leaves. Seasonal variation data revealed that in summer, net tannins and PPP decline in leaves of Bauhinia and Zizyphus whereas the net tannin content of Anogeissus and that of Carrisa increased during summer. The CT and PPP content in the leaves of Pheonix, Leucaena, Zizyphus and Ougenia increased in winter till spring season. Tree leaves generally had higher concentration of HT during summer months. It was concluded that leaves of leaves of A. nilotica, A. latifolia and L. leucocephala could serve as an excellent alternate feed stuffs for ruminants. However, leaves of Phoenix, Carrisa, Bauhinia and Dodonea should be avoided.