• Title, Summary, Keyword: Arduino

Search Result 503, Processing Time 0.039 seconds

Internet of Things(IoT) ON system implementation with minimal Arduino based appliances standby power using a smartphone alarm in the environment (사물인터넷(IoT)환경에서 스마트폰 알람을 이용한 아두이노(Arduino)기반 가전기기 대기전력을 최소화한 ON 시스템 구현)

  • Park, Se-Eon;Hwang, Chan-Gyu;Park, Dong-Cheul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.10
    • /
    • pp.1175-1182
    • /
    • 2015
  • This paper has been an era of full-fledged objects Internet of Things(IoT), which involved the subject of this communication in the communication paradigm of the human heart. Things Arduino-based appliances ON, the system was implemented using the smartphone alarm in the Internet environment. All appliances even if plug connected to an external power source only standby power is present. This system is used for communication with the Arduino things. Connect the appliances power automatically rings the smartphone alarm minimize appliances standby power to things all by ON automatically connected to the Arduino, and the work of giving consumer electronics devices to help weather that automatically operates by Objects is an Internet system.

Implementation of Low-Cost Baby Monitor for deaf and Visually Impaired Person (시각·청각장애인을 위한 저비용 베이비 모니터 구현)

  • Oh, Pa-Do;Kim, Hyeon-Hui;Lee, Boo-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.159-162
    • /
    • 2015
  • In this paper, implement a baby monitor using the arduino for deaf and Visually Impaired. The proposed baby monitors are divided into measuring part & transmit part and linked with the application. The measuring part consists of a sound volume sensor, a transmit part consists of a bluetooth module. The measuring part and transmit part are controlled by the Arduino board. Measure the value of the sound by the sound sensor and delivers value to the arduino board. The measured value is sent to the application by the bluetooth module of transmit part. The application determines the received value and control the smart phone, and outputs the light from the sound and vibration for the value. It showed that the proposed baby monitor and an application is correctly operating in accordance with the value.

  • PDF

Design and Implementation of a Smart Mailbox using Arduino. (아두이노를 이용한 Smart Mailbox 설계 및 구현)

  • Lee, Min-ho;Lee, Jang-ho;Kim, Ha-young;Jeon, Sang-hyeon;Jang, Jae-ho;Yang, Dong-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.267-269
    • /
    • 2016
  • In this paper, we implement a Smart Mailbox using the Arduino and Bluetooth. Smart Mailbox alarm system was combining to the general mailbox. If a mail is arrived to the ultrasonic sensor mounted on the mailbox Smart Mailbox recognizes the mail and sends the smartphone data in real time through the Bluetooth module. Also it stores ultrasonic sensor data in Arduino when bluetooth communication is interrupted. Again it implemented a system for transferring the stored data when the bluetooth communication is made.

  • PDF

Development of STEAM Instructional Materials using Arduino for Creative Engineering Design Class in High Schools and Its Application (일반계고의 창의공학설계 수업을 위한 아두이노 기반 STEAM 수업자료 개발과 적용)

  • Lee, Dae-Seok;Lim, Yeong-Dae;Kim, Jinsoo
    • Journal of Engineering Education Research
    • /
    • v.23 no.1
    • /
    • pp.3-9
    • /
    • 2020
  • The purpose of the study was to develop the Arduino based STEAM instruction materials for creative engineering design class. PDIE model was used in this study. We developed a STEAM lesson plan and a STEAM lesson worksheet for a total of six sessions through the steps of preparation, development, implementation and evaluation. The validity of the instruction materials was evaluated by the 10 experts using a survey. The instruction materials were applied to the class (52 students attended) of the creative engineering designs unit in technology and home economics subject. The class satisfaction and the creative solving-problem ability were examined after the calss. The class satafacition was high as the average of 10 item was 4.57 (out of 5). The paired t-test was conducted to compare the means of the creative solving-problem ability. It was observed that 'understanding and mastery of knowledge, thought, function and skills in a specific domain', 'divergent thinking', 'critical and logical thinking' and ' motivational factors' were significantly increased after the class. The instruction materials develped in this study were successfully designed to enhance the creative solving-problem ability by designing creative tasks and to intrique the interest by adding visual and auditory stimuli with the Arduino.

Study on Arduino Kit VR contents modularization based on virtualization technology in software education field (소프트웨어교육 현장에서 가상화 기술에 기반한 아두이노 키트 VR콘텐츠 모듈화 연구)

  • Park, Jong-Youel;Chang, Young-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.293-298
    • /
    • 2018
  • In the fourth industrial revolution era triggered by the popularization of smart phones, Human daily life and all industrial sites are becoming software and intelligent. With the universal software education for all students nationwide from 2018, Demand is surging, and hardware is interlocked using software technology and Arduino. However, expensive control boards and dozens of different electronic components have to be prepared separately and problems are occurring. In addition, if the same training is repeated, Significantly many parts are lost or destroyed. Being prepared to start a new class is also becoming a very serious problem. In this study, we implement VR technology based on virtualization technology of Arduino board and various electronic parts. In addition, 3D graphics realistic Arduino kit and various electronic components are provided in API form. In this paper, we propose a method of interworking software and virtual hardware on virtualization base.

IoT Enabled Smart Emergency LED Exit Sign controller Design using Arduino

  • Jung, Joonseok;Kwon, Jongman;Mfitumukiza, Joseph;Jung, Soonho;Lee, Minwoo;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.76-81
    • /
    • 2017
  • This paper presents a low cost and flexible IoT enabled smart LED controller using Arduino that is used for emergency exit signs. The Internet of Things (IoT) is become a global network that put together physical objects using network communications for the purpose of inter-communication of devices, access information on internet, interaction with users as well as permanent connected environment. A crucial point in this paper, is underlined on the potential key points of applying the Arduino platform as low cost, easy to use microcontroller with combination of various sensors applied in IoT technology to facilitate and establishment of intelligent products. To demonstrate the feasibility and effectiveness of the system, devices such as LED strip, combination of various sensors, Arduino, power plug and ZigBee module have been integrated to setup smart emergency exit sign system. The general concept of the proposed system design discussed in this paper is all about the combination of various sensor such as smoke detector sensor, humidity, temperature sensor, glass break sensors as well as camera sensor that are connected to the main controller (Arduino) for the purpose of communicating with LED exit signs displayer and dedicated PC monitors from integrated system monitoring (controller room) through gateway devices using Zig bee module. A critical appraisal of the approach in the area concludes the paper.

Development of Sensor and Block expandable Teaching-Aids-robot (센서 및 블록 확장 가능한 교구용 보조 로봇 개발)

  • Sim, Hyun;Lee, Hyeong-Ok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.345-352
    • /
    • 2017
  • In this paper, we design and implement an educational robot system that can use scratch education with the function of user demanding to perform robot education in actual school site in an embedded environment. It is developed to enable physical education for sensing information processing, software design and programming practice training that is the basis of robotic system. The development environment of the system is Arduino Uno based product using Atmega 328 core, debugging environment based on Arduino Sketch, firmware development language using C language, OS using Windows, Linux, Mac OS X. The system operation process receives the control command of the server using the Bluetooth communication, and drives various sensors of the educational robot. The curriculum includes Scratch program and Bluetooth communication, which enables real-time scratch training. It also provides smartphone apps and is designed to enable education like C and Python through expansion. Teachers at the school site used the developed products and presented performance processing results satisfying the missionary needs of the missionaries.

Neural networks optimization for multi-dimensional digital signal processing in IoT devices (IoT 디바이스에서 다차원 디지털 신호 처리를 위한 신경망 최적화)

  • Choi, KwonTaeg
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1165-1173
    • /
    • 2017
  • Deep learning method, which is one of the most famous machine learning algorithms, has proven its applicability in various applications and is widely used in digital signal processing. However, it is difficult to apply deep learning technology to IoT devices with limited CPU performance and memory capacity, because a large number of training samples requires a lot of memory and computation time. In particular, if the Arduino with a very small memory capacity of 2K to 8K, is used, there are many limitations in implementing the algorithm. In this paper, we propose a method to optimize the ELM algorithm, which is proved to be accurate and efficient in various fields, on Arduino board. Experiments have shown that multi-class learning is possible up to 15-dimensional data on Arduino UNO with memory capacity of 2KB and possible up to 42-dimensional data on Arduino MEGA with memory capacity of 8KB. To evaluate the experiment, we proved the effectiveness of the proposed algorithm using the data sets generated using gaussian mixture modeling and the public UCI data sets.

Middle School Students' Metacognition in the Arduino-Based Speed-Measuring Algorithm Development Process (아두이노 기반 속력측정 알고리듬 개발 활동에 나타난 중학교 영재학생의 메타 인지)

  • Lee, Sungwoo;Oh, Wonkun
    • New Physics: Sae Mulli
    • /
    • v.67 no.9
    • /
    • pp.1115-1123
    • /
    • 2017
  • The purpose of this study was to investigate the relationship between the types of metacognition and the conceptual changes in speed of middle-school gifted students in the algorithm development and speed measurement activities using Arduino. Fifteen students of the 7th grade were asked to construct the algorithm for the Arduino and infrared sensor to measure the motion of the lab cart. The conversations of the students were recorded during the experiment activities and analyzed. The result shows that various types of metacognition appeared in the development stage of the algorithm for speed measurement. The types of conceptual change in speed were found as follows: elaboration of new concepts and acquisition of new concepts. The algorithm development activities for the Arduino-based speed measurement can be concluded to play a positive role in enhancing the students' metacognition and in changing preconceptions into physical concepts.

Arduino-based power control system implemented by the MyndPlay (MyndPlay를 이용한 Arduino기반의 전원제어시스템 구현)

  • Kim, Byeongsu;Kim, Seungjin;Kim, Taehyung;Baek, Dongin;Shin, Jaehwan;An, Jeong-Eun;Jeong, Deok-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.924-926
    • /
    • 2015
  • In this paper, we use the interface, which many countries concentrates research of Brain - Computer Interface with the device and MyndPlay based on the IoT intelligent Arduino. Finally we will make the Brain - Computer Connection environment, the purpose of Brain - Computer Interface. Recognizes the EEG of a person who wearing the equipment, analyze, classify, and we did a research to design an intelligent thing to suit user's condition. In addition, we use the XBee, and Bluetooth to communicate to other devices, such as smart phone. In conclusion, this paper check users current status via brain waves, and it allows to control the power and other objects by using the EEG(Electroencephalography).

  • PDF