• Title, Summary, Keyword: Artificial potential field

Search Result 82, Processing Time 0.041 seconds

The Study of Algorithm for the Path generation in the Obstacles Environment (장애물 환경에서 경로 생성을 위한 알고리즘 연구)

  • 황하성;양승윤;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.430-433
    • /
    • 1996
  • In This paper, we design the developed path generation method which is named that CBPM(Continuous path generation method Based artificial Potential field) that is able to be used in the obstacles environment. This CBPM is designed so that it puts together two obstacle avoidance algorithm-the continuous path generation method and the artificial potential field method. Here, the continuous path generation method generate the safety path using continuous path curvature. But, this method has demerits when used in obstacles environment in which are closely located. Another method which is named the artificial potential field method generates the path with the artificial potential field in the obstacles environment. But, APFM has local minima in certain places and unnecessarily calculates the path in which obstacles are not located. So, the developed path generation method, CBPM, is suggested and performances in many different obstacles environments are shown by using computer simulation.

  • PDF

Collison-Free Trajectory Planning for SCARA robot (스카라 로봇을 위한 충돌 회피 경로 계획)

  • Kim, T.H.;Park, M.S.;Song, S.Y.;Hong, S.K.
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.2360-2362
    • /
    • 1998
  • This paper presents a new collison-free trajectory problem for SCARA robot manipulator. we use artificial potential field for collison detection and avoidance. The potential function is typically defined as the sum of attractive potential pulling the robot toward the goal configuration and a repulsive potential pushing the robot away from the obstacles. In here, end-effector of manipulator is represented as a particle in configuration space and moving obstacles is simply represented, too. we consider not fixed obstacle but moving obstacle in random. So, we propose new distance function of artificial potential field with moving obstacle for SCARA robot. At every sampling time, the artificial potential field is update and the force driving manipulator is derived from the gradient vector of artificial potential field. To real-time path planning, we apply very simple modeling to obstacle. Some simulation results show the effectiveness of the proposed approach.

  • PDF

The Real-time Path Planning Using Artificial Potential Field and Simulated Annealing for Mobile Robot (Artificial Potential Field 와 Simulated Annealing을 이용한 이동로봇의 실시간 경로계획)

  • 전재현;박민규;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.256-256
    • /
    • 2000
  • In this parer, we present a real-time path planning algorithm which is integrated the artificial potential field(APF) and simulated annealing(SA) methods for mobile robot. The APF method in path planning has gained popularity since 1990's. It doesn't need the modeling of the complex configuration space of robot, and is easy to apply the path planning with simple computation. However, there is a major problem with APF method. It is the formation of local minima that can trap the robot before reaching its goal. So, to provide local minima recovery, we apply the SA method. The effectiveness of the proposed algorithm is verified through simulation.

  • PDF

Design of Preform using equi-potential lines in Hot Forging (등전위면을 이용한 열간 단조에서의 예비형상 설계)

  • 이영규
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • /
    • pp.71-74
    • /
    • 2000
  • The equi-potential lines designed in the electric field are introduced to find the preform shape in axisymmetric hot forging. The equi-potential lines generated between two conductors of different voltages show similar trends of the minimum work paths between the undeformed shape and the deformed shape. Base on this similarity the equi-potential lines obtained by arrangement of the initial and final shapes are utilized for the design of preform and then the artificial neural network is used to find the range of initial volume and potential value of the electric field.

  • PDF

Motion Planning for Mobile Robots Using a Spline Surface

  • Kato, Kiyotaka;Tanaka, Jyunichi;Tokunaga, Hironori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.1054-1059
    • /
    • 2005
  • The artificial potential method uses a potential field to guide a robot from a start to a goal configuration respectively. The potential field consists of attractive potential used to pull a robot toward a goal and repulsive potential to keep it away from obstacles. However, there are two problems concerning local minimum and computational cost to be resolved in conventional artificial potential methods. This study proposes a method utilizing a spline surface that interpolates arbitrary boundaries and a domain reduction method that reduces the unnecessary area. The proposed spline surface interpolates arbitrary shaped boundaries and is used as an artificial potential to guide a robot for global motion planning of a mobile robot. A reduced domain process reduces the unnecessary domain. We apply a distance-weighted function as such a function, which blends distances from each boundary with a reduction in computational time compared with other analytical methods. As a result, this paper shows that an arbitrary boundary spline surface provides global planning and a domain reduction method reduces local minimum with quick operation.

  • PDF

A New Technique to Escape Local Minimum in Artificial Potential Field Based Path Planning

  • Park, Min-Gyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1876-1885
    • /
    • 2003
  • The artificial potential field (APF) methods provide simple and efficient motion planners for practical purposes. However, these methods have a local minimum problem, which can trap an object before reaching its goal. The local minimum problem is sometimes inevitable when an object moves in unknown environments, because the object cannot predict local minima before it detects obstacles forming the local minima. The avoidance of local minima has been an active research topic in the potential field based path planing. In this study, we propose a new concept using a virtual obstacle to escape local minima that occur in local path planning. A virtual obstacle is located around local minima to repel an object from local minima. We also propose the discrete modeling method for the modeling of arbitrary shaped objects used in this approach. This modeling method is adaptable for real-time path planning because it is reliable and provides lower complexity.

Real time navigaion strategy of a robile robot using artificial potential field

  • Chung, Yong-Hyun;Jin, Sang-Ho;Park, Jung-Il;Lee, Suck-Gyu;Lee, Dal-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.446-448
    • /
    • 1994
  • This paper proposes some dynamic navigation strategy for a mobile robot among multiple moving obstacles. The control force of the robot which consists of repulsive and attractive force is based on the artificial potential field. The artificial potential fields is derived with position or(and) velocities of the objects. The simulation results shows the properties of the proposed strategies.

  • PDF

Local Path Planning for Mobile Robot Using Artificial Neural Network - Potential Field Algorithm (뉴럴 포텐셜 필드 알고리즘을 이용한 이동 로봇의 지역 경로계획)

  • Park, Jong-Hun;Huh, Uk-Youl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1479-1485
    • /
    • 2015
  • Robot's technology was very simple and repetitive in the past. Nowadays, robots are required to perform intelligent operation. So, path planning has been studied extensively to create a path from start position to the goal position. In this paper, potential field algorithm was used for path planning in dynamic environments. It is used for a path plan of mobile robot because it is elegant mathematical analysis and simplicity. However, there are some problems. The problems are collision risk, avoidance path, time attrition. In order to resolve path problems, we amalgamated potential field algorithm with the artificial neural network system. The input of the neural network system is set using relative velocity and location between the robot and the obstacle. The output of the neural network system is used for the weighting factor of the repulsive potential function. The potential field algorithm problem of mobile robot's path planning can be improved by using artificial neural network system. The suggested algorithm was verified by simulations in various dynamic environments.

Formation Control for Swarm Robots Using Artificial Potential Field (인공 포텐셜 장을 이용한 군집 로봇의 대형 제어)

  • Kim, Han-Sol;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.476-480
    • /
    • 2012
  • In this paper, artificial potential field(APF) is applied to formation control for the leader-following swarm robot. Furthermore, APF is constructed by applying the electrical field model. Moreover, to model the obstacle effectively, each obstacle has different form due to the electrical field equation. The proposed method is formed as two sub-objective: path planning for the leader-robot and following-robots following the leader-robot. Finally, simulation example is given to prove the validity of proposed method.

Parameter Selecting in Artificial Potential Functions for Local Path Planning

  • Kim, Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.339-346
    • /
    • 2005
  • Artificial potential field (APF) is a widely used method for local path planning of autonomous mobile robot. So far, many different types of APF have been implemented. Once the artificial potential functions are selected, how to choose appropriate parameters of the functions is also an important work. In this paper, a detailed analysis is given on how to choose proper parameters of artificial functions to eliminate free path local minima and avoid collision between robots and obstacles. Two kinds of potential functions: Gaussian type and Quadratic type of potential functions are used to solve the above local minima problem respectively. To avoid local minima occurred in realistic situations such as 1) a case that the potential of the goal is affected excessively by potential of the obstacle, 2) a case that the potential of the obstacle is affected excessively by potential of the goal, the design guidelines for selecting appropriate parameters of potential functions are proposed.