• Title/Summary/Keyword: Astronomy

Search Result 7,629, Processing Time 0.084 seconds

Efficiency of DRAO Radio Telescope

  • Jung, Jae-Hoon;Auh, Byung-Ryul;Cho, Se-Hyung;Kim, Hyun-Goo;Kim, Bong-Gyu;Park, Yong-Sun;Roh, Duk-Gyoo;Hong, Jung-Ho;Lee, Chang-Hoon;Yim, In-Sung;Choi, Moon-Hang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.14
    • /
    • pp.8.1-8.1
    • /
    • 1989
  • PDF

Test Observations of 14m Radio Telescope(I)

  • Cho, Se-Hyung;Auh, Byung-Ryul;Jung, Jae-Hoon;Lee, Chang-Hoon;Kim, Hyun-Goo;Park, Yong-Sun;Roh, Duk-Gyoo;Yim, In-Sung;Kim, Bong-Gyu;Kim, Tu-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.12
    • /
    • pp.11.1-11.1
    • /
    • 1987
  • PDF

SEOUL NATIONAL UNIVERSITY AGN MONITORING PROJECT. I. STRATEGY AND SAMPLE

  • Woo, Jong-Hak;Son, Donghoon;Gallo, Elena;Hodges-Kluck, Edmund;Jeon, Yiseul;Shin, Jaejin;Bae, Hyun-Jin;Cho, Hojin;Cho, Wanjin;Kang, Daeun;Kang, Wonseok;Karouzos, Marios;Kim, Minjin;Kim, Taewoo;Le, Huynh Anh N.;Park, Daeseong;Park, Songyoun;Rakshit, Suvendu;Sung, Hyun-il
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.4
    • /
    • pp.109-119
    • /
    • 2019
  • While the reverberation mapping technique is the best available method for measuring black hole mass in active galactic nuclei (AGNs) beyond the local volume, this method has been mainly applied to relatively low-to-moderate luminosity AGNs at low redshift. We present the strategy of the Seoul National University AGN Monitoring Project, which aims at measuring the time delay of the $H{\beta}$ line emission with respect to AGN continuum, using a sample of relatively high luminosity AGNs out to redshift z ~ 0.5. We present simulated cross correlation results based on a number of mock light curves, in order to optimally determine monitoring duration and cadence. We describe our campaign strategy based on the simulation results and the availability of observing facilities. We present the sample selection, and the properties of the selected 100 AGNs, including the optical luminosity, expected time lag, black hole mass, and Eddington ratio.

SOMANGNET: SMALL TELESCOPE NETWORK OF KOREA

  • Im, Myungshin;Kim, Yonggi;Lee, Chung-Uk;Lee, Hee-Won;Pak, Soojong;Shim, Hyunjin;Sung, Hyun-Il;Kang, Wonseok;Kim, Taewoo;Heo, Jeong-Eun;Hinse, Tobias C.;Ishiguro, Masateru;Lim, Gu;Ly, Cuc T.K.;Paek, Gregory S.H.;Seo, Jinguk;Yoon, Joh-na;Woo, Jong-Hak;Ahn, Hojae;Cho, Hojin;Choi, Changsu;Han, Jimin;Hwang, Sungyong;Ji, Tae-Geun;Lee, Seong-Kook J.;Lee, Sumin;Lee, Sunwoo;Kim, Changgon;Kim, Dohoon;Kim, Joonho;Kim, Sophia;Jeong, Mankeun;Park, Bomi;Paek, Insu;Kim, Dohyeong;Park, Changbom
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.3
    • /
    • pp.89-102
    • /
    • 2021
  • Even in an era where 8-meter class telescopes are common, small telescopes are considered very valuable research facilities since they are available for rapid follow-up or long term monitoring observations. To maximize the usefulness of small telescopes in Korea, we established the SomangNet, a network of 0.4-1.0 m class optical telescopes operated by Korean institutions, in 2020. Here, we give an overview of the project, describing the current participating telescopes, its scientific scope and operation mode, and the prospects for future activities. SomangNet currently includes 10 telescopes that are located in Australia, USA, and Chile as well as in Korea. The operation of many of these telescopes currently relies on operators, and we plan to upgrade them for remote or robotic operation. The latest SomangNet science projects include monitoring and follow-up observational studies of galaxies, supernovae, active galactic nuclei, symbiotic stars, solar system objects, neutrino/gravitational-wave sources, and exoplanets.