• Title/Summary/Keyword: Average torque

Search Result 87, Processing Time 0.229 seconds

Effect of Geometrical Parameters on Optimal Design of Synchronous Reluctance Motor

  • Nagarajan, V.S.;Kamaraj, V.;Balaji, M.;Arumugam, R.;Ganesh, N.;Rahul, R.;Lohit, M.
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.544-553
    • /
    • 2016
  • Torque ripple minimization without decrease in average torque is a vital attribute in the design of Synchronous Reluctance (SynRel) motor. As the design of SynRel motor is an arduous task, which encompasses many design variables, this work first analyses the significance of the effect of varying the geometrical parameters on average torque and torque ripple and then proposes an extensive optimization procedure to obtain configurations with improved average torque and minimized torque ripple. A hardware prototype is fabricated and tested. The Finite Element Analysis (FEA) software tool used for validating the test results is MagNet 7.6.0.8. Multi Objective Particle Swarm Optimization (MOPSO) is used to determine the various designs meeting the requirements of reduced torque ripple and improved torque performance. The results indicate the efficacy of the proposed methodology and substantiate the utilization of MOPSO as a significant tool for solving design problems related to SynRel motor.

Direct Torque Control Method of Induction Machine with Constant Average Torque (일정한 토크 평균치를 가지는 유도전동기 직접토크제어기법)

  • Kim, Jeong-Ok;Jo, Nae-Su;Choe, Byeong-Tae;Kim, U-Hyeon;Im, Seong-Un;Gwon, U-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.31-34
    • /
    • 2003
  • There are several types of switching table for selection voltage vector in direct torque control of induction motor. In general, two-quadrant and four-quadrant operation switching table are used mostly. Two-quadrant operation has an advantage that reduced the torque ripples in comparison with four-quadrant operation, but it has the defect that is not constant average torque. Because the torque increasing slope size by non-zero voltage vector is different from the torque decreasing slope size by zero voltage vector as speed region. The main objective of this study is to maintain constant average torque using two-quadrant operation switching table. In proposed method, the torque increasing slope or decreasing slope are calculated before selected voltage vector is applied. Then, it is applied to zero voltage vector or non-zero voltage vector until the torque increasing slope and decreasing slope are equal. In total magnitude. Therefore it becomes to maintain average torque at whole operation speed. The validity of the proposed method is proven by simulated and experimental results.

  • PDF

Multi-Object Optimization of the Switched Reluctance Motor

  • Choi, Jae-Hak;Kim, Sol;Kim, Yong-Su;Lee, Sang-Don;Lee, Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, multi-object optimization based on a progressive quadratic response surface method (PQRSM) and a time stepping finite element method (FEM) is proposed. The new PQRSM and FEM are able to decide optimal geometric and electric variables of the switched reluctance motor (SRM) with two objective functions: torque ripple minimization and average torque maximization. The result of the optimum design for SRM demonstrates improved performance of the motor and enhanced relationship between torque ripple and average torque.

The Influence of The Starting Permanent Magnet on Average Torque of The Salient Pole Rotor Type Single Phase SRM (영구자석 기동장치가 회전자 돌극형 단상 SRM의 평균 토오크에 미치는 영향)

  • Kim, Jun-Ho;Lee, Eun-Woong;Lee, Chung-Won;Seo, Jung-Min;Kim, Gyeon-Muk
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1030-1032
    • /
    • 2003
  • Single phase SRM(switched reluctance motor) can not be start by itself because positive torque is generated in limited section. Therefore single phase SRM need starting device which is place the rotor in positive torque section when motor is begun to start. The prototype of salient pole rotor type single phase SRM, fabricated in previous research, has permanent magnet starting device. It is installed in bottom of the rotor for starting by itself. But, it is affected the motor when driving and cause the decrease of torque and speed. On this paper, average torque of the prototype was measured according to installation of the starting device or not. And influence of the staring device on average torque was confirmed by comparison of the results.

  • PDF

Measuring the Average Torque according to Exciting Region of Single Phase SRM (단상 SRM의 여자구간에 따른 평균 토크 측정)

  • Kim Yong-Heon;Lee Eun-Woong;Lee Jong-Han;Lee Hyeon-Woo;Kim Jun-ho
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.989-991
    • /
    • 2004
  • There are many elements that affect the average torque of the single phase SRM. It is related with the stator and rotor pole arcs, the dwell angle of the exciting current, the turn on/off angle, etc., Most of all, the turn on/off angle is affect the design procedure of the driving and control circuit. So, in this study, it is intend to analyze the effect that the variations of the turn on/off angle affects the average torque. and then this analyses will be used to design the control driver of the single phase SRM.

  • PDF

Maximization average torque control of Switched Reluctance Motor using least square method (최소자승법을 이용한 Switched Reluctance Motor의 최대 평균토오크 제어)

  • 김춘삼;정연석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.61-65
    • /
    • 2002
  • RM(Switched Reluctance Motor)'s Torque is generated by phase-current and inductance profile. A new analytical concept is proposed to determine the turn-off angle for maximization of the torque output. This paper describes a new method to maximization the average torque of a current control Switched Reluctance Motor. It is based on the simplified turn-off angle equation using least square method. Simulations carried out on a three-phase 6/4 pole SRM justify the algorithm is described. The suggested maximization average torque is verified by simulation in this paper.

An Asymmetric Rotor Design of Interior Permanent Magnet Synchronous Motor for Improving Torque Performance

  • Yoon, Myung-Hwan;Kim, Doo-Young;Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.387-393
    • /
    • 2015
  • Torque ripple is necessarily generated in interior permanent magnet synchronous motors (IPMSMs) due to the non-sinusoidal distribution of flux density in the air gap and the magnetic reluctance by stator slots. This paper deals with an asymmetric rotor shape to reduce torque ripple which can make sinusoidal flux density distribution in the air gap. Meanwhile the average torque is relatively increased by the asymmetric rotor. Response surface method (RSM) is applied to find the optimum position of the permanent magnets for the IMPSM with improved torque performance. Consequently, an asymmetric structure is the result of RSM and the structure has disadvantage of a mechanical stiffness. Finally, the performance of suggested shape is verified by finite element analysis and structural analysis is conducted for the mechanical stiffness.

Data Interpolation and Design Optimisation of Brushless DC Motor Using Generalized Regression Neural Network

  • Umadevi, N.;Balaji, M.;Kamaraj, V.;Padmanaban, L. Ananda
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.188-194
    • /
    • 2015
  • This paper proposes a generalized regression neural network (GRNN) based algorithm for data interpolation and design optimization of brushless dc (BLDC) motor. The procedure makes use of magnet length, stator slot opening and air gap length as design variables. Cogging torque and average torque are treated as performance indices. The optimal design necessitates mitigating the cogging torque and maximizing the average torque by varying design variables. The data set for interpolation and ensuing design optimisation using GRNN is obtained by modeling a standard BLDC motor using finite element analysis (FEA) tool MagNet 7.1.1. The performance indices of the standard motor obtained using FEA are validated with an experimental model and an analytical method. The optimal design is authenticated using particle swarm optimization (PSO) algorithm and the performance indices of the optimal design obtained using GRNN is validated using FEA. The results indicate the suitability of GRNN as an interpolation and design optimization tool for a BLDC motor.

Sensitivity Analysis of Geometrical Parameters of a Switched Reluctance Motor with Modified Pole Shapes

  • Balaji, M.;Ramkumar, S.;Kamaraj, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.136-142
    • /
    • 2014
  • A major problem in Switched Reluctance Motor (SRM) is torque ripple, which causes undesirable acoustic noise and vibration. This work focuses on reducing the undesirable torque ripple in SRM by modifying stator and rotor geometry. This paper presents a comparative study on torque ripple minimization in SRM with modified pole shapes such as stator pole taper, stator pole face with non-uniform air gap and pole shoe attached to rotor pole. Further this paper presents a detailed sensitivity analysis of the effect of different geometrical parameters that alter the pole face shapes on the performance of SRM. The analysis is performed using finite-element method considering average torque and torque ripple as performance parameters. Based on the analysis, a design combining stator pole taper with non-uniform air gap is proposed to improve the torque characteristics of SRM. The dynamic characteristics of the proposed design are simulated and the results show satisfactory reduction in torque ripple.

Analysis of The Generating Torque Characteristics of 2-Phase lnduction Motor in Phase Control. (이상유도전동기의 립상제어시 발생토오크에 대한 해석)

  • 원종수;장도현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.5
    • /
    • pp.289-297
    • /
    • 1988
  • In this paper, the analysis of a generating torque characteristics of 2-phase induction motor driven with the phase control method is presented. The generating torque equations which represent average torque and pulsating torque are derived from the elementary machine model. The calculating equations which can get the values of average torque and pulsating torque is expressed by the parameters of the equivalent circuit of 2-phase induction motor. According to the calculating equations, these performance characteristics are investigated under various conditions. Finally, a strategy to eliminate non-linearity and pulsating torque generated in driving 2-phase induction motor with the phase control method is presented.

  • PDF