• Title, Summary, Keyword: Banach spaces

Search Result 482, Processing Time 0.704 seconds

HYERS-ULAM STABILITY OF DERIVATIONS IN FUZZY BANACH SPACE: REVISITED

  • Lu, Gang;Jin, Yuanfeng;Wu, Gang;Yun, Sungsik
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.135-147
    • /
    • 2018
  • Lu et al. [27] defined derivations on fuzzy Banach spaces and fuzzy Lie Banach spaces and proved the Hyers-Ulam stability of derivations on fuzzy Banach spaces and fuzzy Lie Banach spaces. It is easy to show that the definitions of derivations on fuzzy Banach spaces and fuzzy Lie Banach spaces are wrong and so the results of [27] are wrong. Moreover, there are a lot of seroius problems in the statements and the proofs of the results in Sections 2 and 3. In this paper, we correct the definitions of biderivations on fuzzy Banach algebras and fuzzy Lie Banach algebras and the statements of the results in [27], and prove the corrected theorems.

k- DENTING POINTS AND k- SMOOTHNESS OF BANACH SPACES

  • Wulede, Suyalatu;Shang, Shaoqiang;Bao, Wurina
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.397-407
    • /
    • 2016
  • In this paper, the concepts of k-smoothness, k-very smoothness and k-strongly smoothness of Banach spaces are dealt with together briefly by introducing three types k-denting point regarding different topology of conjugate spaces of Banach spaces. In addition, the characterization of first type ${\omega}^*-k$ denting point is described by using the slice of closed unit ball of conjugate spaces.

PLANK PROBLEMS, POLARIZATION AND CHEBYSHEV CONSTANTS

  • Revesz, Szilard-Gy.;Sarantopoulos, Yannis
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.157-174
    • /
    • 2004
  • In this work we discuss "plank problems" for complex Banach spaces and in particular for the classical $L^{p}(\mu)$ spaces. In the case $1\;{\leq}\;p\;{\leq}\;2$ we obtain optimal results and for finite dimensional complex Banach spaces, in a special case, we have improved an early result by K. Ball [3]. By using these results, in some cases we are able to find best possible lower bounds for the norms of homogeneous polynomials which are products of linear forms. In particular, we give an estimate in the case of a real Hilbert space which seems to be a difficult problem. We have also obtained some results on the so-called n-th (linear) polarization constant of a Banach space which is an isometric property of the space. Finally, known polynomial inequalities have been derived as simple consequences of various results related to plank problems.

ON THE PETTIS INTEGRAL OF FUZZY MAPPINGS IN BANACH SPACES

  • Park, Chun-Kee
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.535-545
    • /
    • 2007
  • In this paper, we introduce the Pettis integral of fuzzy mappings in Banach spaces using the Pettis integral of closed set-valued mappings. We investigate the relations between the Pettis integral, weak integral and integral of fuzzy mappings in Banach spaces and obtain some properties of the Pettis integral of fuzzy mappings in Banach spaces.

ON THE DEBREU INTEGRAL OF FUZZY MAPPINGS IN BANACH SPACES

  • Park, Chun-Kee
    • The Pure and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.315-326
    • /
    • 2009
  • In this paper, we introduce Debreu integral of fuzzy mappings in Banach spaces in terms of the Debreu integral of set-valued mappings, investigate properties of Debreu integral of fuzzy mappings in Banach spaces and obtain the convergence theorem for Debreu integral of fuzzy mappings in Banach spaces.

  • PDF

THE KÜNNETH SPECTRAL SEQUENCE FOR COMPLEXES OF BANACH SPACES

  • Park, HeeSook
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.809-832
    • /
    • 2018
  • In this paper, we form the basis of the abstract theory for constructing the $K{\ddot{u}}nneth$ spectral sequence for a complex of Banach spaces. As the category of Banach spaces is not abelian, several difficulties occur and hinder us from applying the usual method of homological algebra directly. The most notable facts are the image of a morphism of Banach spaces is not necessarily a Banach space, and also the closed summand of a Banach space need not be a topological direct summand. So, we consider some conditions and categorical terms that fit the category of Banach spaces to modify the familiar method of homological algebra.

Mann-Iteration process for the fixed point of strictly pseudocontractive mapping in some banach spaces

  • Park, Jong-An
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.333-337
    • /
    • 1994
  • Many authors[3][4][5] constructed and examined some processes for the fixed point of strictly pseudocontractive mapping in various Banach spaces. In fact the fixed point of strictly pseudocontractive mapping is the zero of strongly accretive operators. So the same processes are used for the both circumstances. Reich[3] proved that Mann-iteration precess can be applied to approximate the zero of strongly accretive operator in uniformly smooth Banach spaces. In the above paper he asked whether the fact can be extended to other Banach spaces the duals of which are not necessarily uniformly convex. Recently Schu[4] proved it for uniformly continuous strictly pseudocontractive mappings in smooth Banach spaces. In this paper we proved that Mann-iteration process can be applied to approximate the fixed point of strictly pseudocontractive mapping in certain Banach spaces.

  • PDF

FIXED POINT THEOREMS ON GENERALIZED CONE METRIC SPACES OVER BANACH ALGEBRAS AND APPLICATIONS

  • Leng, Qianqian;Yin, Jiandong
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1513-1528
    • /
    • 2018
  • The aim of this paper is to introduce the concept of generalized cone metric spaces over Banach algebras as a generalization of generalized metric spaces and present several fixed point results of a class of contractive mappings in generalized cone metric spaces over Banach algebras. Moreover, in order to support our main results, one example is given at the end of this paper.

ON THE GENERALIZED BANACH SPACES

  • Kang, Buhyeon
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.707-722
    • /
    • 2019
  • For any non-negative real number ${\epsilon}_0$, we shall introduce a concept of the ${\epsilon}_0$-Cauchy sequence in a normed linear space V and also introduce a concept of the ${\epsilon}_0$-completeness in those spaces. Finally we introduce a concept of the generalized Banach spaces with these concepts.