• Title, Summary, Keyword: Batch Scheduling

Search Result 63, Processing Time 0.041 seconds

An Algorithm for Scheduling Repetitive Projects with Resource Continuity and Different Batch Sizes

  • Shim, Euysup;Yoo, Wi Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.565-578
    • /
    • 2013
  • Batch production is common in repetitive construction projects, and it is not unusual for different batch sizes to be used by contractors in one project. While several scheduling methods, such as the Linear Scheduling Method (LSM) and the Repetitive Scheduling Method (RSM) have been proposed and used, no mathematical method for repetitive construction projects has been developed, and it is difficult to consider different batch sizes with the existing methods. An original mathematical algorithm for scheduling repetitive projects with different batch sizes is proposed in this study. This algorithm is illustrated with assumptions of resource continuity and single path in a project and introduces new terms, control batch and critical batch. The algorithm logics and mathematical equations are validated by comparison with the outcomes from a graphical scheduling approach through a simple and practical hypothetic project. As a result, it is expected that the proposed algorithm can be easily adapted and extended to computer software for scheduling, and can be a starting point for research on batch size management in repetitive construction projects.

A modified simulated annealing search algorithm for scheduling of chemical batch processes with CIS policy

  • Kim, Hyung-Joon;Jung, Jae-Hak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.319-322
    • /
    • 1995
  • As a trend toward multi-product batch processes is increasing in Chemical Process Industry (CPI), multi-product batch scheduling has been actively studied. But the optimal production scheduling problems for multi-product batch processes are known as NP-complete. Recently Ku and Karimi [5] have studied Simulated Annealing(SA) and Jung et al.[6] have developed Modified Simulated Annealing (MSA) method which was composed of two stage search algorithms for scheduling of batch processes with UIS and NIS. Jung et al.[9] also have studied the Common Intermediate Storage(CIS) policy which have accepted as a high efficient intermediate storage policy. It can be also applied to pipeless mobile intermediate storage pacilities. In spite of these above researches, there have been no contribution of scheduling of CIS policy for chemical batch processes. In this paper, we have developed another MSA for scheduling chemical batch processes with searching the suitable control parameters for CIS policy and have tested the this algorithm with randomly generated various scheduling problems. From these tests, MSA is outperformed to general SA for CIS batch process system.

  • PDF

Customer Order Scheduling Problems on Parallel Machines with Job Capacity Restriction

  • Yang, Jaehwan
    • Management Science and Financial Engineering
    • /
    • v.9 no.2
    • /
    • pp.47-68
    • /
    • 2003
  • We consider the customer order scheduling problem with job capacity restriction where the number of jobs in the shop at the same time is fixed. In the customer order scheduling problem, each job is part of some batch (customer order) and the composition of the jobs (product) in the batch is pre-specified. The objective function is associated with the completion time of the batches instead of the completion time of the jobs. We first summarize the known results for the general customer order scheduling problems. Then, we establish some new properties for the problems with job capacity restriction. For the case of unit processing time with the objective of minimizing makespan, we develop a polynomial-time optimal procedure for the two machine case. For the same problem with a variation of no batch alternation, we also develop a polynomial-time optimal procedure. Then, we show that the problems with the objectives of minimizing makespan and minimizing average batch completion time become NP-hard when there exist arbitrary number of machines. Finally, We propose optimal solution procedures for some special cases.

Scheduling Parallel Machines for the Customer Order Problem with Fixed Batch Sequence (고정된 주문 작업순서를 갖는 소비자 주문 문제를 이한 병렬 기계의 일정계획)

  • Yang, Jaehwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.4
    • /
    • pp.304-311
    • /
    • 2003
  • This paper considers a new variation of scheduling problems where jobs are dispatched in batches. The variation is the case where the batch sequence is fixed. The objective is to minimize the sum of the completion times of the batches. This simple environment has a variety of real world applications such as part kitting and customer order scheduling. We show that this problem is binary NP-complete when there exist two machines. For the same problem, we develop an optimal dynamic programming (DP) algorithm which runs in pseudo-polynomial time. We finally prove the optimality of the DP algorithm.

Batch Scheduling Problem with Multiple Due-dates Constraints

  • Mohri, Shintaro;Masuda, Teruo;Ishii, Hiroaki
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • This paper describes the issue of batch scheduling.In food production, the lead-time from produc-tion to sale should be decreased becausefreshness of the product is important. Products are shipped at diverse times depending on a demand of sellers, because the types of sellers has become diversified such as super-markets, convenience stores and etc. production of quantity demanded must be completed by time to ship it then. The authors consider a problem with due-dates constraints and construct the algorithm to find the opti-mal schedule that satisfy the due-dates constraint, batch size constraint, inventory time constraint and mini-mize total flow time.

Customer Order Scheduling Problems with Fixed Machine-Job Assignment

  • Yang, Jae-Hwan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • /
    • pp.615-619
    • /
    • 2004
  • This paper considers a variation of customer order scheduling problems. The variation is the case where machine-job assignment is fixed, and the objective is to minimize the sum of the completion times of the batches. In customer order scheduling problems, jobs are dispatched in batches. While a machine can process only one job at a time, multiple machines can simultaneously process jobs in a batch. We first establish a couple of lower bounds. Then, we develop a dynamic programming (DP) algorithm that runs in exponential time on the number of batches when there exist two machines. For the same problem with arbitrary number of machines, we present two simple heuristics, which use simple scheduling rules such as shortest batch first and shortest makespan batch first rules. Finally, we empirically evaluate the heuristics.

  • PDF

Batch Scheduling of Incompatible Job Families with Sequence Independent Setup Times (공정 교체 시간을 고려한 배치작업의 일정계획)

  • 김주일;이영훈
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.2
    • /
    • pp.69-83
    • /
    • 2001
  • The problem of minimizing total tardiness on a batch processing machine with incompatible job families when there are sequence independent setup times between families is studied where all jobs of the same family have identical processing times and jobs of different families cannot be processed together. A batch processing machine can process a number of jobs, within a maximal batch size, simultaneously as a batch. The processing time required of each batch is equal to the one of jobs. A dynamic programming algorithm which gives the optimal solution, and several heuristics are presented. Performance of simple dispatching rules based on due dates are compared, and the best of them is used as an initial solution for the decomposition algorithm, which is shown to give good schedules in relatively short computational time.

  • PDF

MILP model for short-term scheduling of multi-purpose batch plants with batch distillation process

  • Ha, Jin-Juk;Lee, Euy-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.1826-1829
    • /
    • 2003
  • Fine chemical production must assure high-standard product quality as well as characterized as multi-product production in small volumes. Installing high-precision batch distillation is one of the common elements in the successful manufacturing of fine chemicals, and the importance of the process operation strategy with quality assurance cannot be overemphasized. In this study, we investigate the optimal operation strategy and production planning of a sequential multi-purpose plants consisting of batch processes and batch distillation with unlimited intermediate storage. We formulated this problem as an MILP model. A mixed-integer linear programming model is developed based on the time slot, which is used to determine the production sequence and the production path of each batch. Illustrative examples show the effectiveness of the approach.

  • PDF

Optimal Operation Strategy and Production Planning of Sequential Multi-purpose Batch Plants with Batch Distillation Process (회분식 공정과 회분식 증류공정을 복합한 순차적 다목적 공정의 최적 운용전략 및 생산일정계획)

  • Ha, Jin-Kuk;Lee, Euy-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1163-1168
    • /
    • 2006
  • Manufacturing technology for the production of high value-added fine chemical products is emphasized and getting more attention as the diversified interests of customers and the demand of high quality products are getting bigger and bigger everyday. Thus, the development of advanced batch processes, which is the preferred and most appropriate way of producing these types of products, and the related technologies are becoming more important. Therefore, high-precision batch distillation is one of the important elements in the successful manufacturing of fine chemicals, and the importance of the process operation strategy with quality assurance cannot be overemphasized. Accordingly, proposing a process structure explanation and operation strategy of such processes including batch processes and batch distillation would be of great value. We investigate optimal operation strategy and production planning of multi-purpose plants consisting of batch processes and batch distillation for the manufacturing of fine chemical products. For the short-term scheduling of a sequential multi-purpose batch plant consisting of batch distillation under MPC and UIS policy, we proposed a MILP model based on a priori time slot allocation. Also, we consider that the waste product of being produced on batch distillation is recycled to the batch distillation unit for the saving of raw materials. The developed methodology will be especially useful for the design and optimal operations of multi-purpose and multiproduct plants that is suitable for fine chemical production.

A Batch Scheduling Problem for Jobs with Interval-typed Processing Time (구간 공정 시간을 갖는 작업들의 일괄처리 일정계획문제)

  • 오세호
    • Journal of the Society of Korea Industrial and Systems Engineering
    • /
    • v.27 no.1
    • /
    • pp.47-50
    • /
    • 2004
  • This paper deals with the problem of batching and scheduling of jobs whose processing times are different respectively But, they are given as not the exact value but the range from the lower limits to the upper, which makes it possible to group jobs into batches. The grouping of jobs is desirable because of the capability of the batch processor to accommodate several jobs at once. The time required to process the jobs in any batch depends on their lower limit processing times. Once processing is initiated on a batch processor, the batch cannot be interrupted, nor can other jobs be started. And all jobs are assumed to be simultaneously available. This paper develops the model to describe these situation and a heuristic method to minimize its total tardiness.