• Title, Summary, Keyword: Battery chargers

Search Result 51, Processing Time 0.035 seconds

High Power Factor Converter for Electric Vehicle Chargers (전기자동차 충전기용 고역율 콘버어터 회로)

  • 김영민;이수원;모창호;유철로
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 1997
  • Generally, various semiconductor switching devices for power systems are used in battery chargers for electric vehicle. When these used, it takes the problems of transient-current or distortion of waveforms in power systems near by battery chargers because of harmonics and large peak-current, low power factor, etc., caused by the non-linearity of these devices. Recently, power factor control, line current peak-cut, harmonics reduction which was ignored in past is more and more important. In this paper, to solve those problems we will improve the characteristics of voltage rising and propose the high power factor converter circuit for battery chargers. Our proposed system convert commutated voltage to AC resonant wave in high frequency inverter and rectify the link voltages passed high-frequency transformer and transfer the DC voltages. Especially, the effect using these converter system can be improved very large by power factor control and we have to verify the possibilities of improvement through the experiment of Pb-Acid battery application.

  • PDF

Smart Panel Board for EV Standard Chargers and Its Control Method (전기자동차 완속충전기용 스마트 분전반 및 그 제어방법)

  • Kim, Myeong-Soo;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.511-521
    • /
    • 2014
  • This study proposes an electric vehicle (EV) smart panel board and its control method on the basis of charging scheduling. The proposed system consists of batteries, a three-phase battery charger, three single-phase inverters, transfer switches for electric power distribution, and a controller. The three-phase battery charger usually charges the batteries at midnight when electric rates are cheap and in light load. When the electric power consumption of the EV standard chargers connected to one phase of the power line is relatively large or when a blackout occurs, the electric power stored in the battery is supplied by discharging through the inverters to the EV standard chargers. As a result, the value of peak load and the charging electric power quantity supplied from a utility grid are reduced, and the current unbalance is improved. The usefulness of the proposed system is confirmed through simulations, experiments, and case studies.

Self-Excited Half-Bridge Inverter for Contact less Charger (무접촉 충전기용 자려식 Half-Bridge 인버터)

  • Kim, Yun-Sung;Ahn, Tae-Young;Choi, Byung-Cho
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1074-1076
    • /
    • 2000
  • This Paper reports on an experimental and theoretical work about self exited Half-Bridge inverter for contact less battery chargers. The steady state characteristics of inverter are analysis and the experimental result for 500kHz, universal AC source input have been obtained. These inverter is suitable for the portable appliances with battery chargers such as cellular phone.

  • PDF

A novel hybrid LLC converter topology of on-board battery chargers for electric vehicles (전기자동차 온보드 충전기를 위한 새로운 하이브리드 LLC 공진 컨버터)

  • Ta, Le Anh Dao;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.197-198
    • /
    • 2018
  • This paper proposes a novel hybrid converter topology suitable for electric vehicle on-board battery chargers, which is a combination of the full-bridge (FB) and half-bridge (HB) LLC circuits. A full load controllability under wide output voltage range can be achieved with a small resonant inductance, which increases the efficiency and lowers the size and cost. Simulation results are shown to evaluate the dynamic performance of the proposed converter.

  • PDF

Reduction of DC-Link Capacitance in Single-Phase Non-Isolated Onboard Battery Chargers

  • Nguyen, Hoang Vu;Lee, Sangmin;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.394-402
    • /
    • 2019
  • This paper proposes a single-phase non-isolated onboard battery charger (OBC) for electric vehicles (EVs) that only uses small film capacitors at the DC-link of the AC-DC converter. In the proposed charger, an isolated DC-DC converter for low-voltage batteries is used as an active power decoupling (APD) circuit to absorb the ripple power when a high-voltage (HV) battery is charged. As a result, the DC-link capacitance in the AC-DC converter of the HV charging circuit can be significantly reduced without requiring any additional devices. In addition, some of the components of the proposed circuit are shared in common for the different operating modes among the AC-DC converter, LV charging circuit and active power filter. Therefore, the cost and volume of the onboard battery charger can be reduced. The effectiveness of the proposed topology has been verified by the simulation and experimental results.

Design of Three-winding Coupled Inductor for Minimum Current Ripple in Battery Chargers

  • Kang, Taewon;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.195-196
    • /
    • 2015
  • This paper investigates the design of coupled inductor for minimum inductor current ripple in rapid traction battery charger systems. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor which corresponds to a minimum inductor ripple current becomes -0.5, i.e. a complete inverse coupling without leakage inductance, as the steady-state duty ratio operating point approaches 1/3 or 2/3. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the steady-state duty ratio operating point approaches either zero or one. Coupled inductors having optimal coupling factor can minimize the ripple current of inductor and battery current resulting in a reliable and efficient operation of battery chargers.

  • PDF

Research on the Analysis and Improvement of the Performance of the Phase-Shifted Full-Bridge Converter for Electric Vehicle Battery Charger Applications (전기자동차 탑재형 충전기 응용에서 위상변조 풀브리지 컨버터 성능 분석과 그 개선에 관한 연구)

  • Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.479-490
    • /
    • 2015
  • The conventional phase-shifted full-bridge (PSFB) converter with an LC filter has been widely used for high-power applications of over 1.0 kW. However, the PSFB converter cannot obtain optimal power conversion efficiency during the battery charging in electric vehicle (EV) on-board battery charger applications because of its unique drawbacks, such as a large circulating current and very high voltage stress in the rectifier diodes. As a result, the converters with a capacitive filter, such as LLC resonant converters, replace the PSFB converter in the EV chargers. This study analyzes the problems of the PSFB converter for EV on-board charger applications in detail. Moreover, the newest converters based on the conventional PSFB converter are reviewed. On the basis of the reviews, new PSFB converter topologies are proposed for EV charger applications. The new topologies are formed by connecting the rectifier stage in the PSFB converter with the output of an LLC resonant converter in series. Many problems of the conventional PSFB converter for EV charger applications can be solved and the performance can be more improved because of this structure; this idea is confirmed by an experiment consisting of prototype battery chargers under the output voltage range of 250-450 Vdc at 3.3 kW.

Update of charging technologies and cost-optimized charging infrastructure (전기자동차 충전기술 현황 및 경제적 충전 인프라 구축)

  • Ha, Hoi-Doo;Park, Jung-Woo;Kim, Jong-Mu
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1886-1891
    • /
    • 1998
  • Traction battery chargers are an integral part of the required charging infrastructure. EV charging systems are continuing to improve in design. The newer types are affecting power quality to a much lesser extent. High efficiency battery chargers are being designed and produced which form little or no harmonic distortion. In addition chargers are becoming smaller and lighter. This is due mainly to the fact that there are improvements in the power electronics industry, especially with respected to IGBTs. Lower costs are achieved by the reduction in price of the IGBTs, standard magnetic material and small cores for inductors and transformers. But electric vehicles occupy a relatively small market niche at present. Therefore with already existing power supply networks, establishment of EV infrastructure can safeguard the service value of present vehicle as well as ensure the ability to charge a significant number of such vehicle. In this paper, we surveyed the update charging technologies according to the conductive charging, inductive charging and fast charging. Then we suggested cost-optimized charging infrastructure in consideration of the economical, political and technical standpoint.

  • PDF

A Study on Performance Improvement of Rechargeable Power Modules (충전식 전원 모듈의 성능 개선에 대한 연구)

  • Ahn, Tae-Won;Lee, Kang-Yoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.141-145
    • /
    • 2017
  • This paper presents a method to improve Li-ion battery charging speed for portable electronic devices maintaining stable operating temperature. The proposed method uses multiple chargers which consist of a master module and slave modules designed with single wire communication signal for parallel current path in order to simplify the additional hardware needs. A single wire communication signal control between a master module and slave modules makes the number of pins of parts lowered and the required area small, furthermore leading to lower cost. Therefore the proposed charging method can be practically used for implementing battery charging modules requiring high speed Li-ion battery charging.

A Voltage-fed Single-stage PFC Full-bridge Converter with Asymmetric Phase-shifted Control for Battery Chargers

  • Qian, Qinsong;Sun, Weifeng;Zhang, Taizhi;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • A novel voltage-fed single-stage power factor correction (PFC) full-bridge converter based on asymmetric phase-shifted control for battery chargers is proposed in this paper. The attractive feature of the proposed converter is that it can operate in a wide output voltage range without an output low-frequency ripple, which is indispensable in battery charger applications. Meanwhile, the converter can maintain a high power factor and a controllable dc bus voltage over a wide output voltage range. In this paper, the realization of PFC and the operation principle of asymmetric phase-shifted control are given. A small-signal analysis of the proposed single-stage power factor correction (PFC) full-bridge converter is performed. Experimental results obtained from a 1kW experimental prototype are given to validate the feasibility of the proposed converter. The PF is higher than 0.97 over the entire output voltage range with the proposed control strategy.