• Title/Summary/Keyword: Beam structure

Search Result 202, Processing Time 0.131 seconds

A study on the Framed Structure with Triple Beam In the Korean Wooden Architecture (한국 목조건축의 삼중량(三重樑) 가구(架構)에 관한 연구)

  • Yang, Jae-Young
    • Journal of architectural history
    • /
    • v.17 no.3
    • /
    • pp.61-80
    • /
    • 2008
  • The purpose of this study is to discover the characteristics and the change of the framed structure with triple beam. 61 existing buildings with the triple beam structure were selected and analyzed extensively. The result of this study could be described in detail like below. The triple beam structure is used in the highly graded and symbolized building like the Buddhist sanctum and the Confucian sanctum. And the triple beam structure was chiefly used in $1600{\sim}1800's$. Generally, 1 Koju-type with Toikan(退間) is applied to the triple beam structure. Despite of the sameness of framed structure, there is a tendency that the rear Toikan(後退間) is used in the Buddhist sanctum and the front Toikan(前退間) is used in the Confucian sanctum. This different application of the Toikan(退間) resulted from the different spatial characteristics which reflect function and grade of the building. The application of Sangjungdori(上中道里, upper purlin) and two Danyeon(短椽, short rafter) is a necessary consequence, because Jungbo(중보, middle beam) is located between Daebo(대보, beam) and Jongbo(종보, small and high located beam) as an additional member of frame. And these are essential characteristics of the framed structure with triple beam. The triple beam structure is formed in a transitional period, as the result from eliminating the inner high-column from the 2 Koju and double beam structure. Though the Daebo is longer, the structure is more stable. But the rate of application of the triple beam structure is low, because it does not exceed the double beam structure in merits. Some of buildings with the triple beam structure has the asymmetrical characteristic in design, which is appeared in the latter period of Joseon Dynasty.

  • PDF

Dynamic Response of a Beam Structure with Discrete Supports Subjected to a Moving Mass (이동질량에 의한 이산지지 보 구조물의 동적응답)

  • Oh, B.J.;Ryu, B.J.;Lee, G.S.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.264-270
    • /
    • 2011
  • This paper deals with dynamic response of a beam structure with discrete spring-damper supports under a moving mass. Governing equations of motion taking into account of all inertia effects of the moving mass were derived by Galerkin's mode summation method, and Runge-Kutta integration method was applied to solve the differential equations. The effects of the speed of the moving mass, spring stiffness, damping coefficient, span number of a beam structure, mass ratio of the moving mass on the dynamic response of the beam structure have been studied. Some numerical results provide design engineers for the beam structure design with discrete supports under a moving mass.

Active Vibration Control of a Beam Structure Using Hybrid Mount (하이브리드마운트를 이용한 빔 구조물의 능동진동제어)

  • 김승환;홍성룡;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.524-531
    • /
    • 2003
  • This paper presents an active vibration control of a flexible beam structure using a hybrid mount which consists of elastic rubber and Piezoelectric material. After identifying stiffness and damping properties of the rubber and piezoelectric elements, a mechanical model of the hybrid mount is established. The mount model is then Incorporated into the beam structure, and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the beam structure subjected to high frequency and small magnitude excitations. The controller is experimentally realized and control responses such as acceleration of the beam structure and force transmission through the hybrid mount are evaluated. In addition. a comparative work is done between the passive and hybrid mount systems.

Vibration Control of a Beam Structure Using Hybrid Mounts (하이브리드 마운트를 이용한 빔구조물의 진동제어)

  • Kim, Seung-Hwan;Hong, Sung-Ryong;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.440-445
    • /
    • 2002
  • A hybrid mount featuring elastic rubber and piezoelectric material is devised and applied to the vibration control of a beam structure. The governing equation of the beam structure associated with the hybrid mount is derived. Subsequently, a robust sliding mode controller is designed to attenuate the vibration of the beam structure due to external excitation. The controller is then simulated and control responses such as displacement and transmitted force are evaluated in time and frequency domains.

  • PDF

Vibration Control of a Beam Structure Using Hybrid Mounts (하이브리드 마운트를 이용한 빔구조물의 진동제어)

  • Kim, Seung-Hwan;Hong, Sung-Ryong;Park, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.347.1-347
    • /
    • 2002
  • A hybrid mount featuring elastic rubber and piezoelectric material is devised and applied to the vibration control of a beam structure. The governing equation of the beam structure associated with the hybrid mount is derived. Subsequently, a robust sliding mode controller is designed to attenuate the vibration of the beam structure due to external excitation. The controller is then simulated and control responses such as displatement and transmitted force are evaluated in time and frequency domains.

  • PDF

Evaluation of Characteristics for Stress Distribution on Cylindrical Beam Structure by Deformation and Restoration Process (변형 및 복원공정에 따른 실린더 형상 구조물의 응력분포 특성)

  • Park Chi-Yong;Kim Jin-Weon;Boo Myung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1
    • /
    • pp.132-138
    • /
    • 2005
  • In heavy industrial fields such as power plant and chemical plant, it is often necessary to restore damaged part of large machinery and structure which is installed in the hazard working place. In this paper, to estimate stress distribution which occurs during damage and restoration of cylindrical beam structure, the finite element technique has been used. A finite element model was verified by experiment for non deformed cylindrical beam structure. The displacements and elastic recovery have an excellent agreement between experiment and finite element analysis. The variations of stress distribution on deformation and restoration procedure for surfaces have been examined. The maximum von Mises stress appears in the surface for deformation and restoration procedure. In deformation procedure, the maximum stress occurs in the vicinity of support body. In restoration procedure, the maximum stress occurs in the vicinity of the fixing body. The fixing body allows avoiding stress concentration in adjacent support structure boundary.

Damage detection for beam structures based on local flexibility method and macro-strain measurement

  • Hsu, Ting Yu;Liao, Wen I;Hsiao, Shen Yau
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.393-402
    • /
    • 2017
  • Many vibration-based global damage detection methods attempt to extract modal parameters from vibration signals as the main structural features to detect damage. The local flexibility method is one promising method that requires only the first few fundamental modes to detect not only the location but also the extent of damage. Generally, the mode shapes in the lateral degree of freedom are extracted from lateral vibration signals and then used to detect damage for a beam structure. In this study, a new approach which employs the mode shapes in the rotary degree of freedom obtained from the macro-strain vibration signals to detect damage of a beam structure is proposed. In order to facilitate the application of mode shapes in the rotary degree of freedom for beam structures, the local flexibility method is modified and utilized. The proposed rotary approach is verified by numerical and experimental studies of simply supported beams. The results illustrate potential feasibility of the proposed new idea. Compared to the method that uses lateral measurements, the proposed rotary approach seems more robust to noise in the numerical cases considered. The sensor configuration could also be more flexible and customized for a beam structure. Primarily, the proposed approach seems more sensitive to damage when the damage is close to the supports of simply supported beams.

Investigation on Friction Noise in Beam Structure Under Mode-Coupling by Using Analytical Finite-Element Squeal Model (스퀼 융합모델을 이용한 모드연성에 의한 빔 구조 마찰 소음 연구)

  • Kang, Jaeyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.545-550
    • /
    • 2014
  • This study provided the analytical finite element method estimating the friction-induced noise on the complex beam structure. The frictional contact model was theoretically constructed and applied to the analytical finite element squeal model. The numerical results showed that the beam structure was excited by the mode-coupling instability of the specific system modes. Also, the direction of friction was shown to influence on the dynamic instability of the modes. Besides, the unstable modal frequencies estimated from the numerical calculation were validated by the experiment of the actual beam structure.

Optimization of Fiber Ratio in Laminated Composites for Development of Three-dimensional Preform T-beam Structure (3차원 프리폼 T-빔 구조물의 개발을 위한 적층복합재료 섬유비율의 최적화)

  • Lee, Dong-Woo;Kim, Chang-Uk;Byun, Joon-Hyung;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • Finite element analysis of T-beam laminate structure under bending-torsional loading was conducted to prevent the delamination which is the major failure behavior on laminated composites. Three-dimensional preform, which is that fabric is braided through thickness direction, is suggested from the laminate analysis. The analysis aimed to optimize the fiber ratio in laminated composites. After it is suggested that guideline for design of T-beam structure using commercial software ANSYS Composites PrePost. The results show that strength of T-beam structure is increased 21.6% when the fiber density along with beam length direction is two times bigger than transverse direction. It is expected that development of high strength T-beam structure using designed three-dimensional preform.

Dynamic Stability Analysis of an Axially Accelerating Beam Structure (축 방향 가속을 받는 보 구조물의 동적 안정성 해석)

  • Eun, Sung-Jin;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9
    • /
    • pp.1053-1059
    • /
    • 2005
  • Dynamic stability of an axially accelerating beam structure is investigated in this paper. The equations of motion of a fixed-free beam are derived using the hybrid deformation variable method and the assumed mode method. Unstable regions due to periodical acceleration are obtained by using the Floquet's theory. Stability diagrams are presented to illustrate the influence of the dimensionless acceleration, amplitude, and frequency. Also, buckling occurs when the acceleration exceeds a certain value. It is found that relatively large unstable regions exist around the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the stability diagram is confirmed by direct numerical integration of the equations of motion.