• Title, Summary, Keyword: Bifidobacterium spp

Search Result 71, Processing Time 0.035 seconds

Isolation and Identification of Superior Bifidobacterium strains from Korean Feces

  • Kim, Ji-Yeon;Lee, Yun-Jong;Choe, Su-Im;Heo, Tae-Ryeon
    • 한국생물공학회:학술대회논문집
    • /
    • /
    • pp.422-425
    • /
    • 2001
  • For isolating and identifying Bifidobacterium spp. originating from Korea, feces were sampled from healthy Korean infants nursery school and postpartum care center. Through the use of gram staining and microscopic examination for cell morphology, 87 bacterial strains presumed to be the Bifidobacterium strains were isolated from 59 Koreans. To identify the Bifidobacterium strains at the genus level, these bacteria were then analyzed using the TLC method. As a result, 29 of the isolated strains were confirmed as members of the genus Bifidobacterium. 29 Bifidobacterium strains were tested acid, bile salts and oxygen tolerance and investigated antioxidative effect specially. And determined the superiority of 5 strains out of 29 Bifidobacterium strains. Finally, the selected bifidobacterium was identified with using designed 16S-ITS rDNA primer.

  • PDF

Purification of Bacillus sp. $\beta$-Mannanase and the Growth Activity of Bifidobacterium spp. by Guar Gum Hydrolysates. (Bacillus sp.유래 $\beta$-Mannanase 정제 및 Guar Gum가수분해 올리고당의 Bifidobacterium spp.에 대한 증식활성)

  • 최준영;박귀근
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.117-122
    • /
    • 2004
  • Bacillus sp. $\beta$-mannanase was purified by DEAE-sephadex ion exchange column chromatography. The specific activity of the purified enzyme was 21.57 units/$m\ell$ protein, representing an 95.33-folds purification of the original crude extract. The final preparation thus obtained showed a single band on SDS-polyacrylamide gel electrophoresis. The molecular weight was determined to be 38.9 kDa. Guar gum galactomannan was hydrolyzed by the purified $\beta$-mannanase, and then the hydrolysates was separated by activated carbon column chromatography and Sephadex G-25 gel filtration. The main hydrolysates were composed of D.P. (Degree of Polymerization) 5 and 7 galactomannooligosaccharides. To investigate the effects of guar gum galactomannooligosaccharides on in vitro growth of Bifidobacterium longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, and B. breve, Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P. 5 and D.P. 7 galactomannooligosaccharides, respectively B. longum and B. bifidum grew up l0-fold and 9.8-fold more effectively by the treatment of D.P. 5 galactomannooligosaccharides, compared to those of standard MRS medium. Especially, D.P. 5 was more effective than D.P. 7 galactomannooligosaccharide on the growth of Bifidobacterium spp.

Purification of Xylogone sphaerospora ${\beta}$-mannanase and Growth Activity of Bifidobacterium spp. by Konjac Glucomannan Hydrolysates (Xylogone sphaerospora 유래 ${\beta}$-mannanase 정제 및 Konjac Glucomannan 가수분해 올리고당의 중합도별 Bifidobacterium spp.에 대한 증식활성)

  • Lee, Hee-Jung;Park, Gwi-Gun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.159-163
    • /
    • 2008
  • Xylogone sphaerospora ${\beta}$-mannanase was purified by Sephadex G-100 column chromatography. The specific activity of the purified enzyme was 8.44 units/ml protein, representing an 56.27-folds purification of the original crude extract. The final preparation thus obtained showed a single band on SDS-polyacrylamide gel electrophoresis. The molecular weight was determined to be 42kDa. Konjac glucomannan was hydrolyzed by the purified ${\beta}$-mannanase, and then the hydrolysates was separated by activated carbon column chromatography. The main hydrolysates were composed of D.P. (Degree of Polymerization) 3 and 4 glucomannooligosaccharides. For elucidate the structure of D.P 3 and 4 glucomannooligosaccharides, sequential enzymatic action was performed. D.P 3 and 4 were identified as M-G-M and M-M-G-M (G- and M- represent glucosidic and mannosidic link-ages). To investigate the effects of konjac glucomannooligosaccharides on in vitro growth of Bifido-bacterium longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, B. auglutum and B. breve. Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P. 3 and D.P. 4 glucomannooligosaccharides, respectively. B. longum and B. bifidum grew up 3.9-fold and 2.8-fold more effectively by the treatment of D.P. 4 glucomannooligosaccharides, compared to those of standard MRS medium. Especially, D.P. 4 was more effective than D.P. 3 glucomannooligosaccharide on the growth of Bifidobacterium spp.

Isolation of Macrophage-activating Bifidobacterium for the Manufacture of Fermented Rice Products (쌀 발효제품 제조를 위한 마크로파지활성 비피더스균의 선발)

  • 차성관;홍석산;지근억;목철균;박종현
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.6
    • /
    • pp.509-514
    • /
    • 1999
  • Forty seven amylolytic Bifidobacterium strains were isolated on starch-containing agar medium from the faecal samples of the various age groups of Korean. From these amyloytic Bifidobacterium spp., two strains of KFRI 1535, identified temporarily as Bifidobacterium longum, and KFRI 1550, identified as Bifidobacterium breve, showed great macrophage-stimulating activity for the production of tumor necrosis factor-$\alpha$ and inteleukin-6. As the cell concentration increased the cytokine production increased, although in some strains the cytokine levels started to decline over cell concentration increased the cytokine production increased, although in some strains the cytokine levels started to decline over cell concentration of $250\mu\textrm{g}$/ml. the strains which showed high cytokine-stimulating activity generally showed greater production of nitric oxide even though differences were less between strains. Selected Bifidobacterium strains were compared for their fermentation capability in saccharified rice solution and in apple pomace mixture.

  • PDF

Microencapsulation Technology for Enhancement of Bifidobacterium spp. Viability: A Review (비피도박테리아의 생존성 증진을 위한 캡슐화 기술)

  • Song, Minyu;Park, Won Seo;Yoo, Jayeon;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.143-151
    • /
    • 2017
  • The intestinal microbiota has been shown to have a vital role in various aspects of human health, and accumulating evidence has shown the beneficial effects of supplementation with bifidobacteria for the improvement of human health, ranging from protection against infection to various positive effects. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Microencapsulation of probiotic bacterial cells provides protection against adverse conditions during processing, storage, and gastrointestinal passage. In this paper, we review the current knowledge, future prospects, and challenges of microencapsulation of probiotic Bifidobacterium spp.

Development of Cell Entrapment Technology for the Improvement of Bifidobacterium Viability (Bifidobacterium의 생존력 증대를 위한 세포포집기술개발)

  • Park, Hui-Gyeong;Bae, Gi-Seong;Heo, Tae-Ryeon
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.389-395
    • /
    • 1999
  • Bifidobcterium spp. can provide human being with several beneficial physiological. Therefor, there has been a considerable interest in products Bifidobcterium spp. dietary supplements or as starter cultures for probiotic products that may assint in the improvement of health on the human. But indusrial applications have been limited because Bifidobcterium spp. are sensitive to acidic pH due to organic acid produced by themselves and various conditions. The objective of this study was to establish new method for improvement of Bifidobcterium viability by entrapment im calcium alginate beads. We have a plan to select the most suitable polymer through the comparison with acid tolerance oxygen tolerance and theological properties of polymer. Increase of the viable number of Bifidobcterium induced increasing acid tolerance and oxygen tolernce trough the development of entrapment technique. The 4%, 3030mm diameter) sodium alginate beads led to the best survivability under acid condition. Especially, addition of 6% mannitol, 6% glycerol or 6% sorbitol to the sodium alginate helped a beneficial effect on viability against acid, bile salt, hydrogen peroxide and cold strage. The number of viability of entrapeede cells by retreatment was 96 fold higher than non-entrapeed cells after 5 hours of storage under pH 3 acidic condition. These experimental data clearly demonstrate that a whole cell immobilization by entrapment in calcium alginate beads is an important survival mechanism enable to withstand environmental stresses as the acidic condition, hydrogen peroxide toxicity and frozen state.

  • PDF

Acute Oral Toxicity of Bifidobacterium breve K-110 K-111 and B. infantis K-525 Isolated from Korean Intestine in Rats (랫트에서 한국형유산균인 Bifidobacterium breve K-110, K-111 및 infantis K-525 균주제제의 경구투여 급성독성)

  • 이영경;한명주;최응칠;김동현
    • Biomolecules & Therapeutics
    • /
    • v.6 no.4
    • /
    • pp.412-416
    • /
    • 1998
  • Acute oral toxicity of Bifidobacterium breve K-110, Bifidobacterium breve K-111, Bifidobacterium infantis K-525 were studied in Sprague-Dawley rats of both sexes. In this study, we examined number of deaths, clinical signs, bod weight and gross findings for 14 day after single oral administration of B. breve K-110,B. breve K-111 or B. infantis K-525 with different levels. They did not show any toxic effect in rats and oral LD$_{50}$ value was over 5 g/kg in rats.s.

  • PDF

The Changes of Intestinal Normal Flora in Neonates for Seven Days Postnatally (정상 신생아의 대변에서 생후 1주일 동안 장내세균총의 변화)

  • Sung, Nam-ju;Lee, Seung Gue;Kim, Me Jin;Kim, Young Ho;Yang, Seung;Hwang, Il Tae;Jung, Ji A;Lee, Hae Ran;Kim, Jae-Seok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.9 no.2
    • /
    • pp.162-168
    • /
    • 2006
  • Purpose: Microbial colonization of the intestine begins just after birth and development of the normal flora is a gradual process. The first bacteria colonizing the intestine in newborns are Staphylococcus, Enterobacteriaceae and Streptococcus. For several days after birth, the number of Bifidobacterium spp. increase. The aim of this study was to investigate the changes of microflora for seven days postnatally in neonatal stool. Methods: Fifteen neonates (breast : formula : mixed feeding 1 : 8 : 6, vaginal delivery : cesarean section 3 : 12) who were born at the Kangdong Sacred Heart Hospital, Hallym University were enrolled. First meconium and stools of postnatal 1-, 3-, and 7-day were innoculated. Blood agar plates for total aerobes, trypton bile X-glucuronide agar for E. coli, phenylethyl alcohol agar for gram positive anaerobes, MRS agar for Lactobacillus spp., bifidobacterium selective agar for Bifidobacterium spp. and cefoxitin-cycloserine-fructose agar for Clostridium difficile were used in the general incubator ($CO_2$ free incubator), $CO_2$ incubator or the anaerobic chamber for 48 or 72 hours at $37^{\circ}C$ and then colony forming units were counted. Results: No microflora was identified in the first meconium. Total aerobes, E. coli, and gram positive anaerobes were significantly increased with advancing postnatal days. In only one baby, Lactobacillus acidophilus was detected $2{\times}10^5CFU/g$ in the seven-day stool. Bifidobacterium spp. was detected in two babies. Clostridium difficile was not detected during the seven days. There were no significant differences in the bowel flora depending on the delivery pattern and feeding method. Conclusion: This study shows many changes in the intestinal normal flora in neonatal stool during seven days postnatally. If these findings are confirmed with larger studies, the data may be preliminary findings to support use of probiotics in neonates.

  • PDF

Quality Evaluations of a Citron Bio-Soybean Paste (유자 바이오 된장의 품질평가)

  • Koh, Dae-Hee;Kim, Chang-Ryoul
    • The Korean Journal of Food And Nutrition
    • /
    • v.20 no.1
    • /
    • pp.34-39
    • /
    • 2007
  • Microbiological and sensory evaluations were performed on bio-soybean paste treated with citron and immobilized microorganisms from Bifidobacterium animalis DY 64. Aerobic microorganisms in bio-soybean paste stored at room temperature, initially, significantly increased(p<0.05) during 15 days of storage. However, a subsequent, slight decrease(p<0.05) was observed after 30 days. Food pathogens such as Salmonella spp., Staphylococcus aureus and Escherichia coli were not detected in the bio-soybean paste throughout the storage days. Bio-soybean paste treated with 3.0${\sim}$7.0% citron combined with 10% immobilized microorganisms increased consumer acceptance relating odor and flavor. In conclusion, soybean paste treated with citron and immobilized microorganisms from Bifidobacterium animalis could be used as a viable health food with respect to enhancing consumer acceptance.

Effects of Commercial Fructooligosaccharides on Bifidobacteria Kimchi Fermentation (비피도박테리아 김치 발효에 대한 시판 올리고과당의 영향)

  • Chae, Myoung-Hee;Jhon, Deok-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.61-65
    • /
    • 2007
  • In order to extend the viability of aerotolerant Bifidobacterium animalis DY-64, fructooligosaccharide was added to kimchi containing the bifidobacteria. Baechu-kimchi made with Chinese cabbage was prepared with B. animalis DY-64 and fructooligosaccharide. Physicochemical and microbial changes of the kimchi were evaluated during fermentation at $4^{\circ}C$. Bifidobacteria survived longer in kimchi containing fructooligosaccharide than in kimchi not containing the oligosaccharide. The viable cell counts of Lactobacillus spp. and Leuconostoc spp. and the organic acid content of fructooligosaccharide-added kimchi were higher than those of bifidobacteria or conventional kimchi. The sour taste and sourness of fructooligosaccharide-added kimchi were as high as that of conventional kimchi. These results show that the addition of prebiotic fructooligosaccharide in kimchi enhanced the viability of bifidobacteria during functional kimchi fermentation.