• Title, Summary, Keyword: Biomarker Detection

Search Result 134, Processing Time 0.039 seconds

Pyruvate Kinase M2: A Novel Biomarker for the Early Detection of Acute Kidney Injury

  • Cheon, Ji Hyun;Kim, Sun Young;Son, Ji Yeon;Kang, Ye Rim;An, Ji Hye;Kwon, Ji Hoon;Song, Ho Sub;Moon, Aree;Lee, Byung Mu;Kim, Hyung Sik
    • Toxicological Research
    • /
    • v.32 no.1
    • /
    • pp.47-56
    • /
    • 2016
  • The identification of biomarkers for the early detection of acute kidney injury (AKI) is clinically important. Acute kidney injury (AKI) in critically ill patients is closely associated with increased morbidity and mortality. Conventional biomarkers, such as serum creatinine (SCr) and blood urea nitrogen (BUN), are frequently used to diagnose AKI. However, these biomarkers increase only after significant structural damage has occurred. Recent efforts have focused on identification and validation of new noninvasive biomarkers for the early detection of AKI, prior to extensive structural damage. Furthermore, AKI biomarkers can provide valuable insight into the molecular mechanisms of this complex and heterogeneous disease. Our previous study suggested that pyruvate kinase M2 (PKM2), which is excreted in the urine, is a sensitive biomarker for nephrotoxicity. To appropriately and optimally utilize PKM2 as a biomarker for AKI requires its complete characterization. This review highlights the major studies that have addressed the diagnostic and prognostic predictive power of biomarkers for AKI and assesses the potential usage of PKM2 as an early biomarker for AKI. We summarize the current state of knowledge regarding the role of biomarkers and the molecular and cellular mechanisms of AKI. This review will elucidate the biological basis of specific biomarkers that will contribute to improving the early detection and diagnosis of AKI.

Interferon Induced Transmembrane Protein-1 Gene Expression is a Biomarker for Early Detection of Invasive Potential of Oral Squamous Cell Carcinomas

  • Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2297-2299
    • /
    • 2016
  • Background: Early detection of malignant transformation with expression biomarkers has significant potential to improve the survival rate of patients as such biomarkers enable prediction of progression and assess sensitivity to chemotherapy. The expression of interferon inducible transmembrane protein 1 (IFITM1) has been associated with early invasion events in several carcinomas, including head and neck cancers, and hence has been proposed as a novel candidate biomarker. As the incidence of oral squamous cell carcinoma (OSCC) is highest in the Indian population, we sought to investigate: 1) the expression pattern of IFITM1 in OSCC tissue samples obtained from Indian patients of Dravidian origin; and 2) the possibility of using IFITM1 expression as a potential biomarker. Materials and Methods: Total RNA extracted from thirty eight OSCC biopsy samples was subjected to semi-quantitative RT-PCR with IFITM1 and GAPDH specific primers. Results: Of the thirty eight OSCC samples that were analyzed, IFITM1 overexpression was identified in fifteen (39%). Seven expressed a low level, while the remainder expressed high level of IFITM1. Conclusions: The overexpression of IFITM1 in OSCC samples indicates that IFITM1 may be explored for the possibility of use as a high confidence diagnostic biomarker in oral cancers. To the best of our knowledge, this is the first time that IFITM1 overexpression is being reported in Indian OSCC samples.

New surveillance concepts in food safety in meat producing animals: the advantage of high throughput 'omics' technologies - A review

  • Pfaffl, Michael W.;Riedmaier-Sprenzel, Irmgard
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.7
    • /
    • pp.1062-1071
    • /
    • 2018
  • The misuse of anabolic hormones or illegal drugs is a ubiquitous problem in animal husbandry and in food safety. The ban on growth promotants in food producing animals in the European Union is well controlled. However, application regimens that are difficult to detect persist, including newly designed anabolic drugs and complex hormone cocktails. Therefore identification of molecular endogenous biomarkers which are based on the physiological response after the illicit treatment has become a focus of detection methods. The analysis of the 'transcriptome' has been shown to have promise to discover the misuse of anabolic drugs, by indirect detection of their pharmacological action in organs or selected tissues. Various studies have measured gene expression changes after illegal drug or hormone application. So-called transcriptomic biomarkers were quantified at the mRNA and/or microRNA level by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) technology or by more modern 'omics' and high throughput technologies including RNA-sequencing (RNA-Seq). With the addition of advanced bioinformatical approaches such as hierarchical clustering analysis or dynamic principal components analysis, a valid 'biomarker signature' can be established to discriminate between treated and untreated individuals. It has been shown in numerous animal and cell culture studies, that identification of treated animals is possible via our transcriptional biomarker approach. The high throughput sequencing approach is also capable of discovering new biomarker candidates and, in combination with quantitative RT-qPCR, validation and confirmation of biomarkers has been possible. These results from animal production and food safety studies demonstrate that analysis of the transcriptome has high potential as a new screening method using transcriptional 'biomarker signatures' based on the physiological response triggered by illegal substances.

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

The Method Development for Biomarker Diagnosis Based on the Aptamer-protein Crosslink (앱타머와 단백질간 가교를 이용한 바이오마커 진단 방법 개발)

  • Lee, Bo-Rahm;Kim, Ji-Nu;Kim, Byung-Gee
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.352-356
    • /
    • 2011
  • The detection of biomarkers is an important issue for disease diagnosis. However, many systems are not suitable to detect the biomarker itself directly. For direct detection of biomarker proteins in human serum, a new affinity-capture method using aptamers combined with the mass spectrometry was suggested. Since signals from protein samples cannot be amplified, modified chromatin immunoprecipitation (ChIP) and subsequent cross-linking with formaldehyde between aptamers and target proteins were used not to lose the captured target proteins, which allowed us to perform a harsh washing step to remove the non-specifically bound proteins. As a model system, a thrombin aptamer was used as a bait and thrombin as a target protein. Using our modified ChIP and affinity-capture method, non-specific binding proteins on the beads decreased significantly, suggesting that our new method is efficient and can be applied to developing diagnosis systems for various biomarkers.

Pros and cons of using aberrant glycosylation as companion biomarkers for therapeutics in cancer

  • Kang, Jeong-Gu;Ko, Jeong-Heon;Kim, Yong-Sam
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.765-771
    • /
    • 2011
  • Cancer treatment has been stratified by companion biomarker tests that serve to provide information on the genetic status of cancer patients and to identify patients who can be expected to respond to a given treatment. This stratification guarantees better efficiency and safety during treatment. Cancer patients, however, marginally benefit from the current companion biomarker-aided treatment regimens, presumably because companion biomarker tests are dependent solely on the mutation status of several genes status quo. In the true sense of the term, "personalized medicine", cancer patients are deemed to be identified individually by their molecular signatures, which are not necessarily confined to genetic mutations. Glycosylation is tremendously dynamic and shows alterations in cancer. Evidence is accumulating that aberrant glycosylation contributes to the development and progression of cancer, holding the promise for use of glycosylation status as a companion biomarker in cancer treatment. There are, however, several challenges derived from the lack of a reliable detection system for aberrant glycosylation, and a limited library of aberrant glycosylation. The challenges should be addressed if glycosylation status is to be used as a companion biomarker in cancer treatment and contribute to the fulfillment of personalized medicine.

Bladder Cancer Biomarkers: Review and Update

  • Ghafouri-Fard, Soudeh;Nekoohesh, Leili;Motevaseli, Elahe
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2395-2403
    • /
    • 2014
  • As the recurrence and mortality rates of bladder cancer are high, research is needed to find suitable biomarkers for early detection, evaluation of prognosis, and surveillance of drug responses. We performed a computerized search of the Medline/PubMed databases with the key words bladder cancer, biomarker, early detection, prognosis and drug response. Several markers were identified at DNA, RNA and protein levels with different sensitivities and specificities. Only a few of the potential bladder cancer biomarkers have been approved for clinical use. Efforts now should be concentrated on finding a panel of markers with acceptable sensitivity and specificity for early detection of bladder cancer.

Detection of Endocrine-Disrupting Chemicals in Fish and the Use of Fish Vitellogenin as a Biomarker (어류를 이용한 내분비계 장애물질 검출 및 Biomarker로서 Vitellogenin의 이용)

  • Yoon, Seok-Joo;Kim, Il-Chan;Yoon, Yong-Dal;Lee, Jae-Seong
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2
    • /
    • pp.97-107
    • /
    • 2003
  • Fish vitellogenin produces in female liver during oogensesis through estradiol cycle, and produces even in male liver by endocrine-disrupting chemicals (EDCs) such as alkylphenols. The resulting effects of EDCs lead to the low fecundity of female and the feminization (eg. shrinkage of testis) in male. Especially, the production of vitellogenin in male indicates the environmental contamination of EDCs, resulting in the modulation of gene expression profiles and the monitoring of environmental contamination at specific area. In this paper, we suggest that fish vitellogenin is useful for biomonitoring for environmental contamination and would be substantially useful as a biomarker for a detection of EDCs in aquatic environment.

Nano SPR Biosensor for Detecting Lung Cancer-Specific Biomarker (폐암 바이오마커 검출용 나노SPR 바이오센서)

  • Jang, Eun-Yoon;Yeom, Se-Hyuk;Eum, Nyeon-Sik;Han, Jung-Hyun;Kim, Hyung-Kyung;Shin, Yong-Beom;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.144-149
    • /
    • 2013
  • In this research, we developed a biosensor to detect lung cancer-specific biomarker using Anodic Aluminum Oxide (AAO) chip based on interference and nano surface plasmon resonance (nanoSPR). The nano-porous AAO chip was fabricated $2{\mu}m$ of pore-depth by two-step anodizing method for surface uniformity. NanoSPR has sensitivity to the refractive index (RI) of the surrounding medium and also provides simple and label-free detection when specific antibodies are immobilized to the Au-deposited surface of nano-porous AAO chip. To detect the lung cancer-specific biomarker, antibodies were immobilized on the surface of the chip by Self Assembled Monolayer (SAM) method. Since then lung cancer-specific biomarker was applied atop the antibodies immobilized layer. The specific reaction of the antigen-antibody contributed to the change in the refractive index that cause shift of resonance spectrum in the interference pattern. The Limit of Detection (LOD) was 1 fg/ml by using our nano-porous AAO biosensor chip.

Application of Gaussian Mixture Model for Text-based Biomarker Detection (텍스트 기반의 바이오마커 검출을 위한 가우시안 혼합 모델의 응용)

  • Oh, Byoung-Doo;Kim, Ki-Hyun;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.550-551
    • /
    • 2018
  • 바이오마커는 체내의 상태 및 변화를 파악할 수 있는 지표이다. 이는 암을 비롯한 다양한 질병에 대하여 진단하는데 활용도가 높은 것으로 알려져 있으나, 새로운 바이오마커를 찾아내기 위한 임상 실험은 많은 시간과 비용을 소비되며, 모든 바이오마커가 실제 질병을 진단하는데 유용하게 사용되는 것은 아니다. 따라서 본 연구에서는 자연어처리 기술을 활용해 바이오마커를 발굴할 때 요구되는 많은 시간과 비용을 줄이고자 한다. 이 때 다양한 의미를 가진 어휘들이 해당 질병과 연관성이 높은 것으로 나타나며, 이들을 분류하는 것은 매우 어렵다. 따라서 우리는 Word2Vec과 가우시안 혼합 모델을 사용하여 바이오마커를 분류하고자 한다. 실험 결과, 대다수의 바이오마커 어휘들이 하나의 군집에 나타나는 것을 확인할 수 있었다.

  • PDF