• Title, Summary, Keyword: Breakdown voltage

Search Result 1,463, Processing Time 0.048 seconds

Breakdown Voltage Improvement in SOI MOSFET Using Gate-Recessed Structure (게이트가 파인 구조를 이용한 SOI MOSFET에서의 항복전압 개선)

  • 최진혁;박영준;민홍식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.159-165
    • /
    • 1995
  • A gate-recessed structure is introduced to SOI MOSFET's in order to increase the source-to-drain breakdown voltage. A significant increase in the breakdown voltage is observed compared with that of a planar single source/drain SOI MOSFET without inducing the appreciable reduction of the current drivability. We have analyzed the origin of the breakdown voltage improvement by the substrate current measurements and 2-D device simulations, and shown that the breakdown voltage improvement is caused by the reductions in the impact ionization rate and the parasitic bipolar current gain.

  • PDF

The Analysis of Breakdown Voltage for the Double-gate MOSFET Using the Gaussian Doping Distribution

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.200-204
    • /
    • 2012
  • This study has presented the analysis of breakdown voltage for a double-gate metal-oxide semiconductor field-effect transistor (MOSFET) based on the doping distribution of the Gaussian function. The double-gate MOSFET is a next generation transistor that shrinks the short channel effects of the nano-scaled CMOSFET. The degradation of breakdown voltage is a highly important short channel effect with threshold voltage roll-off and an increase in subthreshold swings. The analytical potential distribution derived from Poisson's equation and the Fulop's avalanche breakdown condition have been used to calculate the breakdown voltage of a double-gate MOSFET for the shape of the Gaussian doping distribution. This analytical potential model is in good agreement with the numerical model. Using this model, the breakdown voltage has been analyzed for channel length and doping concentration with parameters such as projected range and standard projected deviation of Gaussian function. As a result, since the breakdown voltage is greatly changed for the shape of the Gaussian function, the channel doping distribution of a double-gate MOSFET has to be carefully designed.

A Study on the Dielectric Strength in Section of Winding in SF6 Gas Transformer ($SF_6$ 가스절연변압기에서 권선의 섹션에 대한 절연내력 연구)

  • Heo, U-Haeng;Ha, Yeong-Sik;Hong, Jeong-Pyo;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.152-158
    • /
    • 2000
  • This paper deal with the experimental discussion about the impulse and AC dielectric strength of SF6 gas insulated transformer. Test sample is measured the dielectric breakdown voltage about modeling of the first and second section which is the weakest for surge voltage. The AC breakdown voltage is appeared 1.4 times than impulse breakdown voltage, so we can estimate that the impulse breakdown voltage is severe to AC breakdown voltage, and when the impulse is applied, in case of lmm tapping with Nomex paper, the characteristics of dielectric breakdown voltage is same to that in oil immersed transformer when SF6 gas pressure is 2.2kg/$cm^2$G.

  • PDF

Study on 3.3 kV Super Junction Field Stop IGBT According to Design and Process Parameters (설계 및 공정 파라미터에 따른 3.3 kV급 Super Junction FS-IGBT에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.210-213
    • /
    • 2017
  • In this paper, we analyzed the structural design and electrical characteristics of a 3.3 kV super junction FS IGBT as a next generation power device. The device parameters were extracted by design and process simulation. To obtain optimal breakdown voltage, we researched the breakdown characteristics. Initially, we confirmed that the breakdown voltage decreased as trench depth increased. We analyzed the breakdown voltage according to p pillar dose. As a result of the experiment, we confirmed that the breakdown voltage increased as p pillar dose increased. To obtain more than 3.3 kV, the p pillar dose was $5{\times}10^{13}cm^{-2}$, and the epi layer resistance was $140{\Omega}$. We extracted design and process parameters considering the on state voltage drop.

Electrical Breakdown Properties of Oil-paper Insulation under Pulsating Voltage Influenced by Temperature

  • Bao, Lianwei;Li, Jian;Zhang, Jing;Li, Xudong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1735-1743
    • /
    • 2016
  • Insulation of valve-side windings in converter transformer withstands pulsating voltages, which will produce more serious insulation problems. In this paper, the electric breakdown experiments of oil-paper insulation specimens were executed at pulsating voltages and different temperatures. Experiment and analysis results showed that the breakdown voltage decreased with increasing temperature under pulsating voltage. The influence of temperature proves to be more significant once the temperature exceeds a limitation threshold. A fitting formula between breakdown voltage and the temperature was reported. Finally, in order to clearly understand the breakdown properties under pulsating voltage, the electric field distribution and space charge behavior under pulsating voltage at different temperature were discussed.

The Effect of Wire-shaped Conducting Particles on the Breakdown Voltage in Compressed $SF_6$ ($SF_6$ 개스 중에시 wire형 도전성 입자가 절연파괴전압에 미치는 영향)

  • Lee, Dong-In;Lee, Hyeong-Ho;Choi, Byoung-Ju;Kim, Young-Bai
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.258-262
    • /
    • 1988
  • Investigations were made on the effects of wire-shaped conducting particles in compressed gas chamber on breakdown voltage. The objective was to recognize the relationship between the length of wire-shaped conducting particles and a.c breakdown voltage. Also the influence of conducting particles on corona inception voltage and extinction voltage were investigated. The values of breakdown voltage and corona inception, extinction voltages were calculated by wire shaped-conducting particles lengths.

  • PDF

A Study on the Novel TIGBT with Trench Collector (트렌치 콜렉터를 가지는 새로운 TIGBT 에 관한 연구)

  • Lee, Jae-In;Yang, Sung-Min;Bae, Young-Seok;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.190-193
    • /
    • 2010
  • Various power semiconductor devices have been developed and evolved since 1950s. Among them, IGBT is the most developed power semiconductor device which has high breakdown voltage, high current conduction and suitable switching speed which perform trade-offs between each other. In other words, there are trade-offs between a breakdown voltage and on-state voltage drop, and between on-state voltage drop and turn-off time. In this paper, the new structure is proposed to improve a trade-off between a breakdown voltage and on-state voltage drop. The proposed structure has a trench collector and this trench collector induces an accumulation layer at the bottom of an n-drift region during off-state. And this accumulation layer prevents expansion of depletion layer so that trapezoidal electric field distribution is performed in the n-drift region. As a result of this, breakdown voltage is increased without increasing on-state voltage drop. The electrical characteristics of the proposed IGBT is analyzed and optimized by using representative device simulator, TSUPREM4 and MEDICI. After optimization, the electrical characteristics of the proposed IGBT is compared with NPT IGBT which have the same device thickness. As a result of this, it can be confirmed that the proposed structure increases the breakdown voltage of 800 V than that of the conventional NPT IGBT without increasing the on-state voltage drop.

Characteristics of Insulation Diagnosis and Failure in Gas Turbine Generator Stator Windings

  • Kim, Hee-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.280-285
    • /
    • 2014
  • In order to evaluate the insulation deterioration in the stator windings of five gas turbine generators(137 MVA, 13.8 kV) which has been operated for more than 13 years, diagnostic test and AC dielectric breakdown test were performed at phases A, B and C. These tests included measurements of AC current, dissipation factor, partial discharge (PD) magnitude and capacitance. ${\Delta}I$ and ${\Delta}tan{\delta}$ in all three phases (A, B and C) of No. 1 generator stator windings showed that they were in good condition but PD magnitude indicated marginally serviceable and bad level to the insulation condition. Overall analysis of the results suggested that the generator stator windings were indicated serious insulation deterioration and patterns of the PD in all three phases were analyzed to be internal, slot and spark discharges. After the diagnostic test, an AC overvoltage test was performed by gradually increasing the voltage applied to the generator stator windings until electrical insulation failure occurred, in order to determine the breakdown voltage. The breakdown voltage at phases A, B and C of No. 1 generator stator windings failed at 28.0 kV, 17.9 kV, and 21.3 kV, respectively. The breakdown voltage was lower than that expected for good-quality windings (28.6 kV) in a 13.8kV class generator. In the AC dielectric breakdown and diagnostic tests, there was a strong correlation between the breakdown voltage and the voltage at which charging current increases abruptly ($P_{i1}$, $P_{i2}$).

The Breakdown Characteristics due to Particles in GIS Chamber (모의 GIS 내에서 파티클의 재질에 따른 절연파괴 특성)

  • 이재걸;곽희로;이강수;김경화;조국희
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • /
    • pp.67-69
    • /
    • 1997
  • Abstract - In this paper, the behaviour and effect of various particles made of conducting wires( Fe, Cu, Al ) in a SF6 insulated electrode system, are presented. It is shown that the ac breakdown voltage of compressed SF6 is influenced by different conducting particles. The breakdown voltage due to the particle is dependent of a class of particle. The breakdown voltage due to Cu particle was the highest and the breakdown voltage due to Al particle was the lowest.

  • PDF

Assessment of Insulation Deterioration in Stator Windings of High Voltage Motor (고압전동기 고정자 권선의 절연열화 평가)

  • Kim, Hee-Dong;Kong, Tae-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.711-716
    • /
    • 2012
  • To assess the insulation deterioration of stator windings, diagnostic and AC breakdown tests were performed on the eleven high voltage (HV) motors rated at 6kV. After completing the diagnostic tests, the AC overvoltage test was performed by gradually increasing the voltage applied to the stator windings until electrical insulation failure occurred, to obtain the breakdown voltage. Stator winding of motors 1, 3, and 8 failed at above rated voltage at 14 kV, 13.8kV, and 16.4kV, respectively. The breakdown voltage of three motors was higher than expected for good quality windings in 6kV motors. Based on deterioration evaluation criteria, the stator winding insulation of eleven HV motors are confirmed to be in good condition. The turning point of the current, $P_{i2}$, in the AC current vs. voltage characteristics occurred between 5kV and 6kV, and the breakdown voltage was low between 13.8kV and 16.4kV. There was a strong correlation between the breakdown voltage and various electrical characteristics in diagnostic tests including Pi2.