• Title, Summary, Keyword: Breakdown voltage

Search Result 1,462, Processing Time 0.047 seconds

Design and fabrication for high breakdown voltage on 1000V bipolar junction transistor (1000V 급 바이폴라 접합 트랜지스터에 대한 고내압화의 설계 및 제작)

  • 허창수;추은상;박종문;김상철
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.4
    • /
    • pp.490-495
    • /
    • 1995
  • A bipolar junction transistor which exihibits 1000V breakdown voltage is designed and fabricated using FLR (Field Limiting Rings). Three dimensional effects on the breakdown voltage is investigated in the cylindrical coordinate and the simulation results are compared with the results in the rectangular coordinate. Breakdown voltage of the device with 3 FLR is simulated to be 1420V in the cylindrical coordinate while it is 1580V in rectangular coordinate. Bipolar junction transistor has been fabricated using the epitaxial wafer of which resistivity is 86 .OMEGA.cm and thickness is 105 .mu.m. Si$_{3}$N$_{4}$ and glass are employed for the passivation. Breakdown of the fabricated device is measured to be 1442V which shows better greement with the simulation results in cylindrical coordination.

  • PDF

The Junction Termination Design Employing Shallow Trench and Field Limiting Ring for 1200 V-Class Devices (얕은 트렌치와 전계 제한 확산 링을 이용한 접합 마감 설계의 1200 V급 소자에 적용)

  • 하민우;오재근;최연익;한민구
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.300-304
    • /
    • 2004
  • We have proposed the junction termination design employing shallow trench filled with silicon dioxide and field limiting ring (FLR). We have designed trenches between P+ FLRs to decrease the junction termination radius without sacrificing the breakdown voltage characteristics. We have successfully fabricated and measured improved breakdown voltage characteristics of the Proposed device for 1200 V-class applications. The junction termination radius of the proposed device has decreased by 15%-21% compared with that of the conventional FLR at the identical breakdown voltage. The junction termination area of the proposed device has decreased by 37.5% compared with that of the conventional FLR. The breakdown voltage of the proposed device employing 7 trenches was 1156 V, which was 80% of the ideal parallel-plane .junction breakdown voltage.

Electrical Breakdown Properties of Insulating Oils for oil-immersed transformer (유입변압기용 절연유의 절연파괴특성)

  • 이인성;신현택;이종필;이수원;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.605-608
    • /
    • 2001
  • With the intention of investigating the breakdown properties of oil-immersed transformer oils in temperature range of 20∼100[$^{\circ}C$], we are made researches AC breakdown in the gap of 500∼2,500[$\mu\textrm{m}$]. The classification for the physical properties of oil for oil-immersed transformer by FTH and $^1$H-NMR experiments was confirmed to type of mineral oils. As the dependance of breakdown properties due to electrode gap length variation, breakdown voltage was found increasing according to the increase of gap, while dielectric strength was decreasing. As a result the characteristics for AC breakdown, It goes to prove that the breakdown voltage was increased to 90[$^{\circ}C$] but decreased over 90[$^{\circ}C$] in the temperature range. Also, breakdown voltage was found increasing in the increase of gap and the rising of temperature according to Weibull distribution.

  • PDF

A study on the v-t characteristics of interfaces between Toughened Epoxy and Rubber with Inverse Power Law (역승법칙을 이용한 터픈드 Epoxy/Rubber 계면의 V-t 특성에 관한 연구)

  • 박정규;이동규;오현석;신철기;박건호;박우현;이기식;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.437-440
    • /
    • 2000
  • In this study, the interfacial dielectric breakdown phenomenon of interface between Epoxy and Rubber was discussed, which affects the stability of insulation system of power delivery devices. The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied, the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law and the long time breakdown life time can be evaluated.

  • PDF

A study on conduction current and D.C. breakdown characteristics in dielectric liquids (절연유의 도전전류와 직류절연파괴특성에 관한 연구)

  • 서국철
    • 전기의세계
    • /
    • v.30 no.4
    • /
    • pp.231-236
    • /
    • 1981
  • It has been known that D.C. breakdown Voltage is lower than A.C. breakdown Voltage in insulatingoil, but there are still many unvivid points at electric conduction in breakdown or under of high electric field. This study measured the electric current-electric field characteristics (I-E characteristics) and the breakdown Voltage under of D.C. electric field of insulating oil using the system of electrodes that are near the Uniform electric field with a result. I can study, electric conduction in area of high electric field depends upon the Schottky effect. The liquidity of breakdown electric field takes place by the local concentration of electric field. The longer gap is and the more electric current is the more breakdown Voltage decreased. There are not almost the change of electric current-electric field characteristics by materials of electrode.

  • PDF

Electrical Breakdown Characteristics of LN2 under Simulated Quenching Conditions for Application of HTS Apparatus (고온초전도 기기응용을 위한 모의 \ulcorner치 환경에서 액체질소의 절연파괴 특성)

  • 백승명;정종만;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.985-990
    • /
    • 2002
  • The electrical breakdown characteristics of liquid nitrogen(LN$\sub$2/) were studied under simulated quenching conditions for application of HTS apparatus. The experimental results for various quenching condition revealed that the breakdown voltage of LN$\sub$2/ with bubble flow velocity and gap spacing. In the case, breakdown voltage decreases gradually with the bubble velocity. When it is bubble velocity from 0 to 1 $\ell$ /min, breakdown voltage rapidly decreases but decreases from 2 $\ell$/min to 10 $\ell$/min slowly. The breakdown voltage for vertical electrode arrangement is higher than that for horizontal electrode arrangement. Also, it did a electric field and potential distribution interpreting at the liquid nitrogen when the bubble existed. The plots of equipotential lines for three cases are also shown.

Area effect of breakdown voltage in $SF_6$ gas ($SF_6$가스중 절연파괴전압에 미치는 전극의 면적효과)

  • Seo, Kil-Soo
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1901-1903
    • /
    • 1996
  • In This paper, to understand statistical properties of breakdown voltage, the experiment is performed on four gaps of different electrode area, ranging from $17.44[cm^2]$ to $1809.5[cm^2]$, in $SF_6$ gas. Statictcial property of breakdown is confirmed Weibull distribution and as area of electrode is increased, breakdown voltage is decreased and converged constant value $E_0$.

  • PDF

The Algorithm for Calculating the Base-Collector Breakdown Voltage of NPN BJT Using the Solution of the Poisson′s Equation (포아송 방정식의 해를 이용한 NPN BJT의 베이스- 컬렉터간 역방향 항복전압 추출 알고리즘)

  • 이은구;김태한;김철성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.384-392
    • /
    • 2003
  • The algorithm for calculating the base-collector breakdown voltage of NPN BJT for integrated circuits is proposed. The method of three-dimensional mesh generation to minimize the time required for device simulation is presented and the method for calculating the breakdown voltage using solutions of the Poisson´s equation is presented. To verify the proposed method, the breakdown voltage between base and collector of NPN BJT using 20V process and 30V process is compared with the measured data. The breakdown voltage from the proposed method of NPN BJT using 20V process shows an averaged relative error of 8.0% compared with the measured data and the breakdown voltage of NPN BJT using 30V process shows an averaged relative error of 4.3% compared with the measured data.

Analysis of the breakdown characteristics of SOI LIGBT with dual-epi layer (이중에피층을 갖는 SOI LIGBT의 항복전압 특성분석)

  • Kim, Hyoung-Woo;Kim, Sang-Cheol;Seo, Kil-Soo;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.249-251
    • /
    • 2003
  • This paper discribes the analysis of the breakdown voltage characteristics of SOI LIGBT with dual epi-layer. In case of SOI LIGBT with dual epi-layer, if we used high doping concentration in epi-layer, we obtained higher breakdown voltage compared with typical device because of charge compensation effect, and we obtained low on-state resistivity characteristic in the same breakdown voltage. In this paper, we analyzed on-state and off-state characteristics of SOI LIGBT with dual epi-layer. Breakdown voltage of proposed LIGBT was shown 125V when $T_1=T_2=2.5{\mu}m$, $N_1=7{\times}10^{15}/cm^3$ and $N_2=3{\times}10^{15}/cm^3$, respectively Although we used high doping concentration and thin epi-layer thickness, breakdown voltage was increased compared with conventional devices.

  • PDF

Relation of Breakdown Voltage and Channel Doping Concentration of Sub-10 nm Double Gate MOSFET (10 nm 이하 DGMOSFET의 항복전압과 채널도핑농도의 관계)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1069-1074
    • /
    • 2017
  • Reduction of breakdown voltage is serious short channel effect (SCE) by shrink of channel length. The deviation of breakdown voltage for doping concentration is investigated with structural parameters of sub-10 nm double gate (DG) MOSFET in this paper. To analyze this, thermionic and tunneling current are derived from analytical potential distribution, and breakdown voltage is defined as drain voltage when the sum of two currents is $10{\mu}A$. As a result, breakdown voltage increases with increase of doping concentration. Breakdown voltage decreases by reduction of channel length. In order to solve this problem, it is found that silicon and oxide thicknesses should be kept very small. In particular, as contributions of tunneling current increases, breakdown voltage increases.