• Title, Summary, Keyword: CFD(Computational Fluid Dynamics) simulation

Search Result 594, Processing Time 0.055 seconds

DEVELOPMENT OF A HYBRID CFD FRAMEDWORK FOR MULTI-PHENOMENA FLOW ANALYSIS AND DESIGN (다중현상 유동 해석 및 설계를 위한 융복합 프레임웍 개발)

  • Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • /
    • pp.517-523
    • /
    • 2010
  • Recently, the rapid evolution of computational fluid dynamics (CFD) has enabled its key role in industries and predictive sciences. From diverse research disciplines, however, are there strong needs for integrated analytical tools for multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-physics and multi-scale phenomena, the multi-phenomena CFD technology enables us to perform the flow simulation for integrated and complex systems. From the multi-phenomena CFD analysis, the high-precision analytical and predictive capacity can enhance the fast development of industrial technologies. It is also expected to further enhance the applicability of the simulation technique to medical and bio technology, new and renewable energy, nanotechnology, and scientific computing, among others.

  • PDF

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond

  • Lee, Byung Joon;Molz, Fred
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.165-174
    • /
    • 2014
  • A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.

CFD - Mature Technology?

  • Kwak, Do-Chan
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.257-261
    • /
    • 2005
  • Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This Is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.

  • PDF

Applicability of Computational Fluid Dynamics on Industrial Ventilation Engineering (산업환기공학에 대한 전산유체역학의 응용가능성)

  • Ha, Hyun-Chul;Kim, Tae-Hyeung;Shim, Kwang-Jin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.2
    • /
    • pp.163-177
    • /
    • 1998
  • Computational Fluid Dynamics(CFD) was applied to predict air flow around the hoods : circular hoods, square hoods, and push-pull hoods. A commercially available CFD software, CFD-ACE(Ver. 4.0), was tested, which is based on the finite volume method using the ${\kappa}-{\varepsilon}$ turbulence model. Numerical results were compared with the experimental, analytical and numerical results from other studies. CFD solutions showed an excellent agreement with the previous experimental and numerical results. It is promising that CFD techniques could be applied on the variety of complex problems in the industrial ventilation engineering.

  • PDF

Hydrodynamic characteristics of valve tray: Computational fluid dynamic simulation and experimental studies

  • Zarei, Taleb;Farsiani, Masoud;Khorshidi, Jamshid
    • The Korean Journal of Chemical Engineering
    • /
    • v.34 no.1
    • /
    • pp.150-159
    • /
    • 2017
  • In order to better understand the hydrodynamics of valve trays, air-water operation in an industrial scale tower with 1.2 m of diameter, consisting of two 14% valve trays, was studied. Experimental results of clear liquid height, froth height, average liquid holdup, dry pressure drop, total pressure drop, weeping and entrainment were investigated, and empirical correlations were presented. Then, a three-dimensional computational fluid dynamics (CFD) simulation in an Eulerian framework for valve tray with ANSYS CFX software was done. The drag coefficient, which was used in the CFD simulations, was calculated from the data obtained in the experiments. The simulation results were found to be in good agreement with experimental data at this industrial scale. The objective of the work was to study the extent to which experimental and CFD simulations must be used together as a prediction and design tool for industrial trays.

Prediction and Evaluation of the Wind Environment in Site Planning of Apartment Housing by CFD (아파트 주거의 배치계획에 있어 CFD에 의한 풍환경의 예측과 평가)

  • Sohn, Saehyung
    • KIEAE Journal
    • /
    • v.10 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • Diverse problems in wind environment has occurred through rapid urbanization and growth of high-rise building numbers, This study aims to propose the CFD (Computational Fluid Dynamics) simulation method and evaluation standard of wind environment in site planning of high rise apartment housing. The CFD simulation method proposed in this study is not existing detail simulation, but it is the method that a designer can correct and develop the design through immediate evaluation of design options in concept design phase. Therefore, the proposed CFD simulation method of wind environment in this study uses the BIM based CFD tool in which the 3D model in concept design phase can be used as for the CFD simulation. In this paper, the study examines existing evaluation standards of comfortableness level in wind environment for pedestrian near buildings, and selects new evaluation method which is possible to apply to the proposed CFD simulation method. In addition, it is to examine calculation time-spending and appropriate mesh division method for finding CFD result which is useful to find the best design options in aspect of wind environment in concept design phase. Furthermore, it proposes the wind environment evaluation method through BIM based CFD simulation.

CFD Analysis Based Optimal Temperature Measurement (CFD 해석 기반 실내 최적 온도 계측)

  • Lee, Min-Goo;Park, Yong-Kuk;Jung, Kyung-Kwon;Yoo, Jun-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.735-738
    • /
    • 2011
  • This paper proposed the method to find out the optimal sensing point of temperature in test-bed with the sensor of temperature, such as real residence. We selected optimal locations by checking temperature change which was simulated by the means of CFD (Computational Fluid Dynamics) and the variation of air flow. We installed 30 temperature sensors in real place. After that, we compared the real one with the result of simulation.

  • PDF

Case study on Remodeling Clearwell Hydraulic Structure using Transient CFD Simulation Technique (Transient CFD 모사기법을 이용한 정수지 최적설계 사례연구)

  • Kim, Seon-Jin;Kim, Seong-Su;Park, No-Suk;Cha, Min-Whan;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.425-432
    • /
    • 2010
  • From the results of tracer test for the existing clearwell in Y water treatment plant, $T_{10}$ and T10/T were calculated as 150 min and 0.24, respectively. Therefore it required the modification schemes for improving hydraulic efficiency, surrogated by $T_{10}$ and $T_{10}$/T, and disinfection performance. In this study, using transient CFD(Computational Fluid Dynamics) simulation technique, tracer tests on dynamic condition for the suggested schemes were simulated. From the results of simulation, it was revealed that 8~6 baffles are necessary to guarantee the disinfection ability in the existing clearwell. Also, installing orifice baffle in the vicinity of inlet could increase plug flow fraction within clearwell.

Computational Fluid Dynamics Modeling Studies on Bacterial Flagellar Motion

  • Kumar, Manickam Siva;Philominathan, Pichai
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.341-348
    • /
    • 2011
  • The study of bacterial flagellar swimming motion remains an interesting and challenging research subject in the fields of hydrodynamics and bio-locomotion. This swimming motion is characterized by very low Reynolds numbers, which is unique and time reversible. In particular, the effect of rotation of helical flagella of bacterium on swimming motion requires detailed multi-disciplinary analysis. Clear understanding of such swimming motion will not only be beneficial for biologists but also to engineers interested in developing nanorobots mimicking bacterial swimming. In this paper, computational fluid dynamics (CFD) simulation of a three dimensional single flagellated bacteria has been developed and the fluid flow around the flagellum is investigated. CFD-based modeling studies were conducted to find the variables that affect the forward thrust experienced by the swimming bacterium. It is found that the propulsive force increases with increase in rotational velocity of flagellum and viscosity of surrounding fluid. It is also deduced from the study that the forward force depends on the geometry of helical flagella (directly proportional to square of the helical radius and inversely proportional to pitch).

Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator (생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증)

  • Kang, Tae-Ho;Nguyen, Thanh D.B.;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.630-638
    • /
    • 2009
  • A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.