• Title, Summary, Keyword: Catenary of subway

Search Result 5, Processing Time 0.026 seconds

Study on Enhancing Lightning Protection Scheme of Catenary in Subway Viaduct Section

  • Li, Rui-Fang;Chen, Kui;Chen, Li-Sheng;Cao, Xiao-Bin;Wu, Guang-Ning;Zhang, Xue-Qin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.950-958
    • /
    • 2017
  • Viaduct increases the height of subway catenary, namely magnifies lightning attraction scope that lead to higher possibility of suffering lightning stroke. Therefore, it is necessary to analyze performance of lightning striking to catenary of subway in viaduct section and propose an improving lightning protection scheme. In this paper, using ATP-EMTP simulation software to establish an associated model to evaluate lightning withstand level of catenary with existing lightning protection schemes including arrester and grounding point, an improving lightning protection scheme is proposed - every pillar ground earth and arresters are installed with some installing spacing between 200m to 400m based on lightning damage degree and reliability requirements - according to analyzing results: while lightning withstand level is lowest for lightning striking to the neutral pillar, lightning withstand level is greatest for lightning striking to the both-ends pillar that arrester and grounding point are both installed; grounding point could obviously improve lightning withstand level for lightning striking to ground wire while arrester could obviously improve the lightning withstand level for lightning striking to catenary; every pillar ground earth could enhance the lowest lightning withstanding level up to 2.5 times than of that pillar ground earth across every 200m.

Analysis of Overhead Rigid Conductor Line for the Subway tunnel section (지하철 터널 구간 강체가선 방식의 특성분석)

  • Yim Geum-Kwang;Chang Sang-Hoon;Kim Wang-Gon
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.493-499
    • /
    • 2003
  • Railroad, a superior mode of public transportation provides safe, efficient, speedy, comfortable and economical service, has fundamentally different characteristics from airplanes, ships and cars. Among the unique characteristics of a railroad is the fact that it operates on fixed track with multiple car trains. The subway system was first selected as the best solution to difficult automobile traffic conditions and environmental problems. Seoul subway no.1line (Jongno line) was opened for service on August 15, 1974. Seoul city has completed and now operates eight subway lines (286.7km) since 1974. At present the subways operate in Busan, Daegu and Incheon city, and are under construction in Gwangju and Daejeon city. The power source for subway trains has been electricity since 1896, and power supply systems are the third rail type and/or the catenary system. The typical catenary system is the rigid bar type. R-bar and T-bar are used in the rigid bar type of catenary system, and the two types of R-bar and T-bar are uesd in Korea also. R-bar is used only for AC 25kV power supply and T-bar for DC 1,500V. From 30 years of subway experience I would like to suggest the most economic catenary system to ensure of safety, reliability and expediency for the railway lines to be constructed and the forthcoming replacement due to the life cycle after studying and analysing the characteristics, advantages and disadvantages of R-bar and T-bar.

  • PDF

Analysis of Breaking Accident of FRP Insulator Rod installed in Dead Section (절연구간 조가선 FRP 절연봉의 절단사고 원인분석)

  • Jang, Don-Guk;Lee, Ki-Won;Kim, Ju-Rak;Park, Hyun-June
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.502-505
    • /
    • 2003
  • The accidnet of breaking insulator rod leads to inturruption of moving the subway. We investigate the analysis of analysis of breaking accident of FRP insulator rod installed in dead section for catenary feeding system. To analysis of accident reason, SEM is used to analysis microscopic struture on surface of cross section of broken FRP insulator rod. At the same time, we examine the chage of atomic amount on solace of accident insulator through EDX analysis. Also, the test for tensional breaking load is condoled to check the mechanical strength.

  • PDF

A Study on Characteristics of Overhead Rigid Conductor System for Developing the High-speed System up to 250km/h (250km/h급 강체전차선로 시스템 개발을 위한 R-BAR 특성 고찰)

  • Bae, Sang-Joon;Jang, Kwang-Dong;Lee, Ki-Won;Park, Youn-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.492-497
    • /
    • 2015
  • An overhead rigid conductor system is mainly applied to the subway and recently studies on the rigid system have been conducted for applications such as tunnels of high-speed line and speed improvement of a conventional lines up to 250km/h. Power feeding performance which is the most important in a rigid system can be measured by contact force and characteristics of this contact force are related to the shape and material of the R-BAR. In this paper, we analyze the measurements of contact force, current heating temperature, impedance of a rigid conductor which was developed in Korea, after that we compare static characteristics of home and abroad rigid conductors which have various shapes and materials.

The Development of Equalizing Spacer for Minimization of Voltage Drop according to DC Feeder Extension (직류 급전선 증설에 따른 전압강하 최소화를 위한 균압 스페이서 개발)

  • Lee, Jae-Bong;Seo, Il-Kwon;Na, Youn-Il;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.1013-1018
    • /
    • 2014
  • This paper described the development of equalizing spacer for minimization of voltage drop according to DC feeder extension. Power consumption is increased as shorter interval of train driving time and transportation capacity increase in urban subway. Therefore we investigated voltage drop of catenary at a point in case of traction driving of a train in parallel to the DC power supply system. Based on it's result, equalizing spacer is designed and fabrication to minimize the voltage drop in accordance with the power supply line arranged in three rows, and then its performance was confirmed that the stress distribution of main body and the distributed load are satisfied through the body structure modeling.