• Title, Summary, Keyword: Circular cell

Search Result 250, Processing Time 0.051 seconds

A Study on Lohmann Type Computer Generated Holograms Using a Circular Cell (원형 셀을 이용한 Lohmann형 컴퓨터 형성 홀로그램에 관한 연구)

  • Seo, Choon-Su;Jeong, Man-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.519-524
    • /
    • 2006
  • In general, the Lohmann-type binary hologram represents its amplitude and phase by using the rectangular cell. In this paper, we adapts a circular cell to represents the amplitude and phase of holograms. In order to compare the characteristics of the circular cell with the rectangular one, we analyzed the results based on the computer simulations and various optical experiments. The results show that a clearer reconstructed image can be obtained by dividing one cell into many pixels. In the case of a uniform reconstructed image, the rectangular cell is better than the circular cell. However, as for the brightness of the reconstructed image, the circular cell is better than the rectangular one.

Circumferential Alignment of Vascular Smooth Muscle Cells in a Cylindrical Microchannel

  • Choi, Jong Seob;Piao, Yunxian;Kim, Kyung Hoon;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.274.1-274.1
    • /
    • 2013
  • We report the circumferential alignment of human aortic smooth muscle cells (HASMCs) in an orthogonally micropatterned circular microfluidic channel to form an in vivo-like smooth muscle cell layer. To realize a biomimetic smooth muscle cell layer which is aligned perpendicular to the axis of blood vessel, we first fabricated a half-circular polydimethylsiloxane (PDMS) microchannel by soft lithography using a convex PDMS mold. The orthogonally micro wrinkle patterns were generated inside the half-circular microchannel by stretching-releasing operation under UV irradiation. Upon UV treatment with uniaxial 40 % stretch of a PDMS substrate and releasing process, the microwrinkle patterns perpendicular to the axial direction of the circular microchannel were generated, which could guide the circumferential alignment of HASMCs successfully during cultivation. The analysis of orientation angle, shape index, and contractile protein marker expression indicates that the cultured HASMCs revealed the in vivo-like cell phenotype. Finally, we produced circular microchannels by bonding two half-circular microchannels, and cultured the HASMCs circumferentially with high alignment and viability for 5 days. These results are the first demonstration for constructing an in vivo-like 3D smooth muscle cell layer in the circular microfluidic channel which can provide novel bioassay platforms for in-depth study of HASMC biology and vascular function.

  • PDF

Constructing a Three-Dimensional Endothelial Cell Layer in a Circular PDMS Microchannel

  • Choi, Jong Seob;Piao, Yunxian;Kim, Kyung Hoon;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.274.2-274.2
    • /
    • 2013
  • We described a simple and efficient fabrication method for generating microfluidic channels with a circular-cross sectional geometry by exploiting the reflow phenomenon of a thick positive photoresist. Initial rectangular shaped positive photoresist micropatterns on a silicon wafer, which were fabricated by a conventional photolithography process, were converted into a half-circular shape by tuning the temperature to around $105^{\circ}C$. Through optimization of the reflow conditions, we could obtain a perfect circular micropattern of the positive photoresist, and control the diameter in a range from 100 to 400 ${\mu}m$. The resultant convex half-circular photoresist was used as a template for fabricating a concave polydimethylsiloxane (PDMS) through a replica molding process, and a circular PDMS microchannel was produced by bonding two half-circular PDMS layers. A variety of channel dimensions and patterns can be easily prepared, including straight, S-curve, X-, Y-, and T-shapes to mimic an in vivo vascular network. To inform an endothelial cell layer, we cultured primary human umbilical vein endothelial cells (HUVECs) inside circular PDMS microchannels, and demonstrated successful cell adhesion, proliferation, and alignment along the channel.

  • PDF

Three-dimensional Detoantion Wave Dynamics in a Circular Tube (원형 관 내부에서의 3차원 데토네이션 파의 동적모형)

  • Cho, Deok-Rae;Won, Soo-Hee;Shin, Jae-Ryul;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.68-75
    • /
    • 2008
  • The three-dimensional structure of detonation wave propagating in a circular tube was investigated using a parallel computational code developed previously. A series of parametric study for a circular tube of a fixed diameter gave the formation mechanism of the detonation cell structures depending on pre-exponential factor, k. The unsteady results in three-dimension showed the mechanisms of two, three and four cell mode of detonation wave front structures. The detonation cell number was increased but cell width and length were decreased with increased pre-exponential factor k. In the all multi-cell mode, the detonation wave structure and smoked-foil records on the wall are made by the moving of transverse waves. The detonation wave front structures have the regular polygon and windmill shapes periodically.

Constitutive Equations for Three Dimensional Circular Braided Glass Fiber Reinforced Composites Using Cell Modeling Method (셀 방법을 이용한 3차원 원형 브레이드 유리 섬유 강화 복합 재료의 구성 방정식)

  • 이원오;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • /
    • pp.71-74
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided composites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced composite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained fer two volume fractions.

  • PDF

Study on Single Gap Transflective Liquid Crystal Display using the Vertical Alignment Mode and circular polarizer (수직 배향된 액정 셀과 원 편광판을 이용한 단일 갭 반투과형 액정 디스플레이 연구)

  • Kim, Jin-Ho;Chin, Mi-Hyung;Jeong, Eun;Lim, Young-Jin;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.401-402
    • /
    • 2008
  • We proposed a single gap transflective liquid crystal display (LCD) using a vertically aligned (VA) liquid crystal cell and circular polarizer. The conventional VA transflective LCDs have problems that there required several compensation films and voltage-dependent transmittance and reflectance curves do not match each other. To solve these problems, we used circular polarizer and optimized the condition of insulator thickness in the transmissive part and reflective part. Also, we used the patterned vertical alignment (PVA) mode for wide viewing angle in transmissive part. Consequently, this device realized transflective LCD with a single cell gap and single gamma curve.

  • PDF

Constitutive Equations Based on Cell Modeling Method for 3D Circular Braided Glass Fiber Reinforced Composites

  • Lee, Wonoh;Kim, Ji Hoon;Shin, Heon-Jung;Chung, Kwansoo;Kang, Tae Jin;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.4 no.2
    • /
    • pp.77-83
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided com-posites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced com-posite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained for two volume fractions.

Study on the Spin-up of Fluid in a Semi-Circular Container Using a Zonal-Embedded-Grid Method (국소적 격자 삽입법을 이용한 반원주 내의 스핀업 유동 특성에 대한 연구)

  • Suh Yong Kweon;Yeo Chang Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.32-37
    • /
    • 2004
  • In this paper the numerical method with a zonal embedded grid system for an incompressible flow within a semi-circular container is presented. The algorithm is validated by its application to some typical flow models including the spin-up flow inside a semi-circular geometry. Flow visualization for the spin-up flows was used by PIV. The results show that at high Reynolds numbers the cyclonic cell at the left-hand side region moves along the circular wall and merges with the cell at the right-hand side region.

  • PDF

Analysis of compensation principle for wide viewing angle characteristics of an OCB cell by the $Poincar\acute{e}$ sphere representation

  • Lee, Seong-Ryong;Yoon, Tae-Hoon;Kim, Jae-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.167-170
    • /
    • 2006
  • In this paper, we study how the viewing angle characteristics of a bend cell can be compensated by uniaxial films such as positive a-plate, negative c-plate and circular polarizer. Especially, it is confirmed how the circular polarizer composed of a quarter-wave plate and a linear polarizer enhances the viewing angle characteristics by the $Poincar\acute{e}$ sphere representation. Also, additional compensation film is designed to improve the viewing angle characteristics of the cell by the $Poincar\acute{e}$ sphere representation.

  • PDF

The Effect of Blank Holding Force on Thickness Variation in Simultaneous Sheet forming process with Circle and Rectangle Shape of AZ31B Magnesium Sheet (AZ31B 마그네슘 판재의 원형 및 사각형 동시변형 공정에서 블랭크 홀딩력이 두께변화에 미치는 영향)

  • Kwon, K.T.;Kang, S.B.;Kim, H.H.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.531-537
    • /
    • 2009
  • The effect of blank holding force on thickness variation in simultaneous sheet forming with rectangular shape and circular has been demonstrated. Because has investigated an effect on formability of magnesium sheet, in this paper, the effect of punch radius on formability have been thinning, various crack phenomena and forming velocity. By simultaneously forming process with circular and rectangular shape, the data of simultaneously forming process with circular and rectangular shape will used to a part development such as notebook computer case, cell phone and bipolar plate of fuel cell.