• Title, Summary, Keyword: Copper Sulfate

Search Result 279, Processing Time 0.039 seconds

The Study on Natural Dyeing with Artemisia (쑥을 이용한 천연염색에 관한 연구)

  • Im, Myeong-Eun;Yu, Hye-Ja;Lee, Hye-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.5
    • /
    • pp.911-921
    • /
    • 1997
  • Recently the interest in natural dyeing has been increased because of the color clarity, natural grace and reactionism in fashion. Indigo dyeing, safflower dyeing and Gal-ott in Cheju-Do become generally known, so the study about the natural dyeing is continued with national intrust and support. In this study, 1 used artemisia for various dyeing tests because we can get it easily. 1 tested the dyeability in wool as well as cotton and silk with wormwood in natural dyeing material. I also dyed nylon with the same material for the comparison of the molecular structure. The mercerization and the chitosan treatment were done in cotton to improve the low dyeability in the natural dyeing. The result of this study are as follows; We have to dye repeatedly to get deep color in natural dyeing, and mordant treatment brought good result in color difference and dyeing fastness. 1. Compared with silk, wool and nylon, the dyeability of cotton was the worse. The color difference of cotton was 18.81 without mordants , and 24.05 with mordant. The dyeability of cotton was much increased by mordants such as potassiumdichromate, copper sulfate, iron sulfate and salt water. The color of cotton was turned into yellow-green in potassium dichromate and yellow-green with deep green in copper sulfate. The mercerization and the chitosan treatment of cotton made the improvement in color, dyeability, laundering fastness, abrasion fastness. 2. The color difference of silk was 3 times as high as cotton. It showed the similar degree with the chitosan treated-cotton. That is to say, silk had good dyeability because it contains amino group and carboxyl group. The dyebility of silk was increased by a mordant such as iron sulfate, potassium dichromate and salt water, Drycleaning fastness showed 5 grade, abrasion-fastness was high over 4~5 grade and sunlight fastness showed 1 grade in all case. 3. The color difference of wool was the best among four fabrics because of 18 kinds of amino acids. It is considered that the sulfate of wool has the polarity and help metal- mordants get the better dyeability such as potassium dichromate, iron sulfate, copper sulfate, and aluminum chloride. The color was reddish-green in potassium dichromate, yellow.greenin iron sulfate and copper sulfate, and yellow in the rest mordants. Drycleaning fastness of wool showed over 4~5 grade, abrasion fastness 5 grade. Sunlight-fastness 1 grade. 4. The dyeability of nylon was almost same because of the similar molecular structure with silk. The clarity of color was poor. The color was yellow-green in copper sulfate and yellow in the rest mordants. Laundering fastness and abrasion-fastness of nylon was good. Sunlight- fastness represented 1 grade.

  • PDF

Study on Synthesis of Fine Copper Powder by Electro-refining from Copper Containing Sludge (동(Cu) 함유 슬러지로부터 동 전해정련을 이용한 미세 동 분말 합성에 관한 연구)

  • Lee, Jin-Yeon;Son, Seong Ho;Park, Sung Cheol;Jung, Yeon Jae;Kim, Yong Hwan;Lee, Man-seung
    • Journal of the Korean Institute of Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.44-52
    • /
    • 2018
  • In this study, copper was recovered from copper containing sludge by selectively controlling electro-refining process conditions in copper sulfate electrolyte solution. Electro-refining process was performed by LSV (Linear Sweep Voltammetry) result according to copper sulfate electrolyte solution concentration, applied current density, additive type and concentration. SEM (Scanning Electron Microscope) and PSA (Particle Size Analyzer) were used to analyze the shape and size of copper powder. In the 0.1 ~ 0.4 M copper sulfate electrolyte solution without organic additives, the copper powder size decreased as the applied current density became closer to the limiting current density and the copper powder size tended to decrease in 0.2 ~ 0.3 M copper sulfate electrolyte solution. In addition, when the shape and size of the copper powder were analyzed by adding various types and concentrations of organic additives to the previous experimental, fine spherical copper powder having the smallest size (nm) was obtained under the condition of cellulose type additive 2,000 ppm.

Recovery of Copper from Spent Copper Solution of Printed Circuit Board Process by Solvent Extraction Method (인쇄회로기판 제조과정에서 발생되는 동폐액의 용매추출에 의한 재활용)

  • Moon, Young-Hwan
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 1996
  • The solvent extraction method was applied on a spent solution containing copper, which was produced in a printed circuit board process, to recover copper and to reuse the etching solution. Lix 64 N ($\alpha$-Hydroxyoxime + $\beta$-Hydroxybenzophenone Oxime) was used as a solvent. The acidic spent copper solution was mixed with and alkaline copper solution to pH=2. The solvent including 30 volume% of Lix 64 N extracted 17.1gr/l of copper from the mixed spent copper solution. In the continuous bench scale experiment, 4 stages for extraction, 2 stages for stripping and 4 stages for washing were used. Recovered copper was recycled as copper sulfate and the raffinate was reused as copper etchant. The percentage of copper recovery and the purity of copper sulfate were higher than 99.9%, respectively.

  • PDF

Studies on the Effects of Consecutive Copper-Administration on Testis Weights, No. of Sperm, Motility and Organ Weights and Histological Changes in Rats (연속적인 Cu투여가 Rat의 정소중량, 정자수, 활력, 장기 중량 및 조직변화에 미치는 영향)

  • 김상근;이명헌
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.1
    • /
    • pp.43-49
    • /
    • 2001
  • This study was performed to elucidate the effects of copper poisoning on the reproductive organ of rats. After consecutive oral administrations of copper sulfate, the weights of testis, the numbers and motilities of sperms, organ weights and histological changes of testes were compared between control and experimental groups. 1. Testis weights of 1,000, 2,000 or 4,000 ppm/kg of copper sulfate-administrated rats gradually decreased compared with control group, and the values no significant changes. 2. The sperm numbers of 1,000, 2,000 or 4,000 ppm/kg of copper sulfate-administrated rats were lowered in dose dependent manners than those of control group's and the values no significant changes. 3, The motilities sperms of 1,000, 2,000 or 4:000 ppm/kg of copper sulfate-administrated rats decreased significantly in dose-dependent manners compared with those of control group's. 4. The weights of livers and kidneys of 1,000, 2,000 or 4,000 ppm/kg of copper sulfate-administration rats decreased or increased. 5. Necrosis of hepatocytes around the central veins and infiltrations of fine granules-harboring macrophages in periportal and interstitial tissues were found out in the livers of copper sulfate-administrated rats. The Bowman's capsule and tubules of kidneys were filled with hyaline material.

  • PDF

A study on the removal of As, Sb, Bi from the copper sulfate solutions by Ion exchange resin containing Aminophosphosphonic acid as a functional group (황산동용액(黃酸銅溶液)에서 Aminophosphosphonic acid 관능기를 가진 이온교환수지에 의한 As, Sb, Bi 제거(除去)에 관한 연구(硏究))

  • Ahn, Jae-Woo;Seo, Jae-Seong
    • Journal of the Korean Institute of Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.50-57
    • /
    • 2012
  • A comparative study has been carried out on the removal of impurities such As, Sb, Bi from the copper sulfate solution by ion exchange resin containing aminophosphosphonic acid as functional group. The various parameters which affect the removal of impurities; such as the reaction temperature, the reaction time, the amount of ion-exchange resins, the concentration of sulfuric acid in electrolyte, were studied. The basic experimental results showed that about 88% of Sb & 94% of Bi can be adsorbed in these chelate resins and removed from the copper sulfate solutions but As was removed below 10% from the solutions. And the selective elution of Bi and Sb from the adsorbed ion exchange resin also can be achieved by $H_2SO_4$ or HCl solutions. The results also showed that 98.1% of Sb and 96.6% of Bi can be adsorbed from the copper sulfate solutions after 2 Bed-volume of continuous ion exchange column test.

Reference Electrode for Monitoring Cathodic Protection Potential

  • Panossian, Z.;Abud, S.E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.227-234
    • /
    • 2017
  • Reference electrodes are generally implemented for the purpose of monitoring the cathodic protection potentials of buried or immersed metallic structures. In the market, many types of reference electrodes are available for this purpose, such as saturated calomel, silver/silver chloride and copper/copper sulfate. These electrodes contain a porous ceramic junction plate situated in the cylindrical body bottom to permit ionic flux between the internal electrolyte (of the reference electrode) and the external electrolyte. In this work, the copper/copper sulfate reference electrode was modified by replacing the porous ceramic junction plate for a metallic platinum wire. The main purpose of this modification was to avoid the ion copper transport from coming from the inner reference electrode solution into the surrounding electrolyte, and to mitigate the copper plating on the coupon surfaces. Lab tests were performed in order to compare the performance of the two mentioned reference electrodes. We verified that the experimental errors associated with the measurements conducted with developed reference electrode would be negligible, as the platinum surface area exposed to the surrounding electrolyte and/or to the reference electrolyte are maintained as small as possible.

In vitro efficacy of formalin, hydrogen peroxide and copper sulfate on the scuticocilliate Uronema marinum at low salinity

  • Jee, Bo Young;Jo, Mi Ra;Kim, Jin Woo;Park, Mi Seon
    • Journal of fish pathology
    • /
    • v.15 no.3
    • /
    • pp.111-115
    • /
    • 2002
  • The scuticocilliate, Uronema marinum is a histophagous ciliate and the causative agent of 'scuticociliatosis'in cultured olive flounder Paralichthys olivaceus. In the present study, in vitro efficacy of hydrogen peroxide, formalin and copper sulfate on the scuticocilliate at low salinity was investigated. Each chemical showed synergistic parasiticidal effects with low salinity (salinity in 5 ppt) compared to each chemical alone (salinity in 33 ppt). At low salinity (5‰), ciliates were killed completely within 1.5h by exposure to 50ppm formalin (37% formaldehyde), at 100ppm hydrogen peroxide (30% solution) and at 100ppm copper sulfate (20% solution). The formalin was the most effective chemical against the parasites at low salinity.

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.

Corrosion of Copper in Anoxic Ground Water in the Presence of SRB

  • Carpen, L.;Rajala, P.;Bomberg, M.
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • Copper is used in various applications in environments favoring and enabling formation of biofilms by naturally occurring microbes. Copper is also the chosen corrosion barrier for nuclear waste in Finland. The copper canisters should have lifetimes of 100,000 years. Copper is commonly considered to be resistant to corrosion in oxygen-free water. This is an important argument for using copper as a corrosion protection in the planned canisters for spent nuclear-fuel encapsulation. However, microbial biofilm formation on metal surfaces can increase corrosion in various conditions and provide conditions where corrosion would not otherwise occur. Microbes can alter pH and redox potential, excrete corrosion-inducing metabolites, directly or indirectly reduce or oxidize the corrosion products, and form biofilms that create corrosive microenvironments. Microbial metabolites are known to initiate, facilitate, or accelerate general or localized corrosion, galvanic corrosion, and intergranular corrosion, as well as enable stress-corrosion cracking. Sulfate-reducing bacteria (SRB) are present in the repository environment. Sulfide is known to be a corrosive agent for copper. Here we show results from corrosion of copper in anoxic simulated ground water in the presence of SRB enriched from the planned disposal site.

Corrosive Characteristics of Metal Materials by a Sulfate-reducing Bacterium (황산염환원미생물에 의한 금속재료의 부식 특성)

  • Lee, Seung Yeop;Jeong, Jongtae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.219-228
    • /
    • 2013
  • To understand characteristics of biogeochemical corrosion for the metal canisters that usually contain the radioactive wastes for a long-term period below the ground, some metal materials consisting of cast iron and copper were reacted for 3 months with D. desulfuricans, a sulfate-reducing bacterium, under a reducing condition. During the experiment, concentrations of dissolved metal ions were periodically measured, and then metal specimen and surface secondary products were examined using the electron microscopy to know the chemical and mineralogical changes of the original metal samples. The metal corrosion was not noticeable at the absence of D. desulfuricans, but it was relatively greater at the presence of the bacterium. In our experiment, darkish metal sulfides such as mackinawite and copper sulfide were the final products of biogeochemical metal corrosion, and they were easily scaled off the original specimen and suspended as colloids. For the copper specimen, in particular, there appeared an accelerated corrosion of copper in the presence of dissolved iron and bacteria in solution, probably due to a weakening of copper-copper binding caused by a growth of other phase, iron sulfide, on the copper surface.