• Title, Summary, Keyword: Copper Sulfate

Search Result 279, Processing Time 0.049 seconds

Leaching kinetics of a Nigerian complex covellite ore by the ammonia-ammonium sulfate solution

  • Baba, Alafara Abdullahi;Balogun, Ayo Felix;Olaoluwa, Daud Temitope;Bale, Rafiu Babatunde;Adekola, Folahan Amoo;Alabi, Abdul Ganiyu Funsho
    • The Korean Journal of Chemical Engineering
    • /
    • v.34 no.4
    • /
    • pp.1133-1140
    • /
    • 2017
  • Hydrometallurgical treatment of copper sulfide ore is increasingly establishing itself as a feasible route for the extraction of copper and recovery of associated precious metals value. This is attributed to the merits of this route, which include suitability for low-grade and complex ores, high recoveries, competitive economics, and other operational features. The leaching kinetics of Nigerian complex covellite ore was investigated in ammonia-ammonium sulfate solution. The concentration of ammonia and ammonium sulfate, the ore particle size, and the temperature were chosen as parameters in the experiments. The results show that temperature, concentration of ammonia-ammonium sulfate has favorable influence on the leaching rate of covellite ores; however, leaching rate decreases with increasing particle size. At optimal conditions ($1.75mol/L\;NH_4OH+0.5mol/L(NH_4)_2SO_4$, $-90+75{\mu}m$, $75^{\circ}C$, with moderate stirring) about 86.2% of copper ore reacted within 120 minutes. The mechanism of the leaching was further established by characterizing the raw ore and the leached residue by EDXRF - chemical composition, SEM - structural morphology and XRD - phase identification studies. From the X-ray diffraction analysis, the partially unreacted Cu and S phases were presumed to be CuO, and the iron present in the CuS phase was mainly converted to hematite ($Fe_2O_3{\cdot}H_2O$), as the CuS phase disintegrated and remained in the residue afterward.

Synthesis, crystal structure, and thermal property of piperazine-templated copper(II) sulfate, {H2NCH2CH2NH2CH2CH2}{Cu(H2O)6}(SO4)2

  • Kim, Chong-Hyeak;Park, Chan-Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.381-385
    • /
    • 2005
  • The title compound, $\{H_2NCH_2CH_2NH_2CH_2CH_2\}\{Cu(H_2O)_6\}(SO_4)_2$, I, has been synthesized under solvo/hydrothermal conditions and their crystal structure analyzed by X-ray single crystallography. Compound I crystallizes in the monoclinic system, $P2_1/n$ space group with a = 6.852(1), b = 10.160(2), $c=11.893(1){\AA}$, ${\beta}=92.928(8)^{\circ}$, $V=826.9(2){\AA}^3$, Z = 2, $D_x=1.815g/cm^3$, $R_1=0.031$ and ${\omega}R_2=0.084$. The crystal structure of the piperazine templated Cu(II)-sulfate demonstrate zero-dimensional compound constituted by doubly protonated piperazine cations, hexahydrated copper cations and sulfate anions. The central Cu atom has a elongated octahedral coordination geometry. The crystal structure is stabilized by three-dimensional networks of the intermolecular $O_{water}-H{\cdots}O_{sulfate}$ and $N_{pip}-H{\cdots}O_{sulfate}$ hydrogen bonds between the water molecules and sulfate anions and protonated piperazine cations. Based on the results of thermal analysis, the thermal decomposition reaction of compound I was analyzed to have three distinctive stages.

Hygienic Chemical Conditions of Farm Waters in Kyunggi Province (경기지역 목장수의 위생화학적 조사연구)

  • 박석기;윤중섭;김은정;임봉택;이용욱
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.3
    • /
    • pp.22-28
    • /
    • 1993
  • In order to investigate the hygienic chemical conditions of farm waters used as the potable and cleaning water for cow, we examined the pH, turbidity, KMnO$_4$ consumption, total hardness, chlorine, sulfate, NH$_3$-N, NO$_3$-N, lead, maganese, copper, zinc, fluoride and chrome for 78 farm waters around Kyunggi Province. Of 78 farm waters tested, average pH was 6.70+_0.06, turbidity 0.724 $\pm$ 0.081, KMnO$_4$ consumption 4.200 $\pm$ 0.256 mg/l, total hardness 107.46 $\pm$ 6.90 mg/l, NH$_3$-N 0.043 $\pm$ 0.037 mg/l, NO$_3$-N 8.096 $\pm$ 0.652 mg/l, chlorine 21.414 $\pm$ 2.187 mg/l, sulfate 12.737 $\pm$ 1.511 mg/l, lead 0.076 $\pm$ 0.001 mg/l, manganese 0.029 $\pm$ 0.004 mg/l, copper 0.018 $\pm$ 0.002 mg/l, zinc 0.055 $\pm$ 0.005 mg/l, chrome 0.048 $\pm$ 0.002 mg/l and fluorine 0.011 $\pm$ 0.001 mg/l. According to the geological characteristics, the concentrations of total hardness, NO$_3$-N, pH and chlorine in farm waters of Hwasung gun were higher than those in Yangpyung and Kwangju gun. In hygienic chemical items tested, there were high significanc among NO$_3$-N, total hardness, sulfate and chlorine. KMnO$_4$ consumption was significant with NH$_3$-N, sulfate and pH. But in heavy metals, there were significance between lead and copper, copper and chrome, and copper and fluorine.

  • PDF

Effects of Dietary Supplementation of Copper-Sulfate and Copper-Soy Proteinate on the Performance and Small Intestinal Microflora in Laying Hens (Copper-Sulfate와 Copper-Soy Proteinate 첨가가 산란계의 생산성과 장내 미생물 균총에 미치는 영향)

  • Kim, Chan Ho;Kang, Hwan Ku;Bang, Han Tae;Kim, Ji Hyuk;Hwangbo, Jong;Choi, Hee Cheol;Paik, In Kee;Moon, Hong Kil
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.241-247
    • /
    • 2014
  • The objective of this experimental was to investigate the effect of dietary Cu-sulfate and Cu-soy proteinate on productive performance and small intestinal microflora. A total 1,000 Hy-Line Brown laying hens (35 weeks old) were randomly allotted to 1 of 5 dietary treatments: Control, Cu-sulfate 50, 100 (50, 100 ppm Cu supplementation as Cu-sulfate) and Cu-SP 50, 100 (50, 100 ppm Cu supplementation as Cu-soy proteinate). Each treatment was replicated 4 times with fifty birds per replication, housed in 2 birds cages. Fifty birds units were arranged according to randomized block design. Feeding trial lasted 5 weeks under 16L : 8D lighting regimen. Hen day egg production was significantly (P<0.05) higher in Cu treated groups than control. Feed intake, broken and shell-less egg production was not significantly influenced by treatment. Eggshell color, eggyolk color, haugh unit, and eggshell thickness were not significantly influenced by treatment. However, eggshell strength was significantly (P<0.05) greater in Cu treated groups than control. Concentration of copper of liver was significantly (P<0.05) greater in Cu treated groups than control. Concentration of zinc and iron of liver were not influenced by treatments. Population of Cl. perfrigens and Lactobacilli in the small intestinal content were significantly (P<0.05) influenced by treatments. Population of Cl. perfrigens decreased and that of Lactobacilli increased in the Cu supplement groups. In conclusion, dietary Cu sulfate and Cu-soy proteinate similarly improves egg production, eggshell strength, and favors intestinal microbial population of laying hens.

Selective nucleation of copper on fluorocarbon-resin surface by Nd:YAG laser-induced chemical reaction (레이저 유도 화학반응을 이용한 fluorocarbon 수지표면 위의 선택적 구리핵의 형성)

  • Lee, Hong-Kyu;Lee, Kyoung-Cheol;Ahn, Min-Young;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1535-1537
    • /
    • 1999
  • Photochemical defluorination and substitution of fluorocarbon-resin surfaces using a pulsed Nd:YAG laser(266 nm) and copper-sulfate$(CuSO_4)$ aqueous solution were discussed. Interface of copper nuclei and fluorocabon-resin was chemically bonded through oxygen which was photodissociated from water in copper-sulfate aqueous solution under the laser irradiation. The reaction mechanism for chemical surface modification is discussed on the basis of x-ray photoelectron spectroscopy and atomic force microscope analyses.

  • PDF

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

Copper ion Toxicity Causes Discrepancy between Acetate Degradation and Methane Production in Granular Sludge

  • Bae, Jin-Woo;Rhee, Sung-Keun;Jang, Am;Kim, In-S.;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.849-853
    • /
    • 2002
  • Metal ions have an adverse effect on anaerobic digestion. In an acetate degradation test of upflow of anaerobic sludge blanket granules with $Cu^{2+}$, not all of the acetate that disappeared was stoichiometrically converted to methane. In the presence of 400 mg/g-VSS (volatile suspended solids) $Cu^{2+}$, only 26% of the acetate consumed was converted to methane. To study acetate conversion by other anaerobic microorganisms, sulfate and nitrate reductions were investigated in the presence of $Cu^{2+}$ Sulfate and nitrate reductions exhibited more resistance to $Cu^{2+}$than methanogenesis, and the granules reduced 2.2 mM and 5.4 mM of nitrate and sulfate, respectively, in the presence of 400 mg/g-VSS copper ion. However, the acetate degraded by sulfate and nitrate reductions was only 24% of the missing acetate that could have been stoichiometrically converted to $CO_2$. Accordingly, 76% of the acetate consumed appeared to have been converted to other unknown compounds.

Control Efficacy of Fungicides on Pepper Bacterial Wilt (고추 풋마름병에 대한 살균제의 방제 효과)

  • Lee, Soo Min;Kwak, Yeon Soo;Lee, Kyeong Hee;Kim, Heung Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.323-328
    • /
    • 2015
  • Control efficacy was investigated with fungicides as 3 copper compound, 3 antibiotic fungicides and one fungicide containing to quinolone against the growth of Ralstonia solanacearum on NA medium and the disease occurrence on pepper seedlings. Among 7 fungicides, oxytetracycline was shown the highest activity against a growth of the pathogen in the agar diffusion method, but validamycin showed no activity against the pathogen. With $1000{\mu}g\;mL^{-1}$ of each copper fungicide as copper hydroxide, copper oxychloride+ dithianone and copper sulfate, 2.2, 1.3 and 1.5 mm in size of clear zone only could be found, respectively. In pepper seedling test, oxytetracycline showed a perfect activity in all treatments 7 days after inoculation. However, its activity was decreased from $500{\mu}g\;mL^{-1}$ of treatment over the time. Copper fungicides showed the control efficacy lower than antibiotic fungicides except for validamycin. Based on the results, it was suggested that it would be better to use antibiotic fungicides than copper fungicides to control pepper bacterial wilt in the fields.

The Treatment of Flue SO$_2$ Gas by Cu Powder (I) (구리 분말을 이용한 $SO_2$ 배기가스의 처리(I))

  • 정국삼;김학성;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1986
  • To remove sulfur dioxide from flue gas by the method of metal oxide, copper powder of average diameter $2.4\mu\textrm{m}$and $51\mu\textrm{m}$ were used in a fixed bed reactor over a, temperature range of $300^{\circ}C-500^{\circ}C$. Copper oxide reacts with sulfur dioxide producing cupric sulfate and it can be regenerated from the latter by using hydrogen or methane. Experimental results showed that the reaction rate was increased by the increase of reaction temperature in the range of $300^{\circ}C-422^{\circ}C$ and the removal efficiency of sulfur dioxide was high in case of small size copper particle. However the removal efficiency was decreased at higher temperature due to decomposition of cupric sulfate. The rate controlling step of this reaction was chemical reaction and deactivating catalysts model can be applied to this reaction. The rate constants for this reaction and deactivation are as follows : k=8,367exp(-10,298/RT) Kd=2.23exp(-8,485/RT)

  • PDF

Selection of Bactericides for Controlling Soybean Bacterial Pustule (콩 불마름병 방제를 위한 살균제 선발)

  • Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin;Lee, Bong-Choon;Yoon, Young-Nam;Park, Sung-Tae
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.266-273
    • /
    • 2010
  • Bacterial pustule of soybean (Glycines max) caused by Xanthomonas axonopodis pv. glycines is one of the most prevalent bacterial diseases of soybean. This bacterium shows strong pathogenicity to the plants and distributes throughout Korea. However, no good control measures including bactericides and resistant cultivars are available to control the disease in Korea. Therefore, this study was conducted to develop chemical control method against soybean bacterial pustule. The present study was undertaken to find out the growth inhibitory effect bactericides (8 antibiotics, 2 copper compounds, quinoline, 18 agro-chemicals) on bacterial pustule pathogen. Antibiotics test showed that tetracycline and streptomycin sulfate significantly suppressed the growth of bacterial pustule pathogen. Also, application of oxolinic acid was found to be effective for pathogen inhibition. However, vancomycin, polymyxin B sulfate and copper compounds did not show the positive suppressive effect on growth of the pathogen. Among the eighteen agro-chemicals, streptomycin sulfate + oxytetracyclin (18.8 + 1.5%) WP, oxytetracycline (17%) WP and oxolinic acid (20%) WP were found to be effective for the inhibition of the pathogen in vitro. The selected 5 agro-chemicals were also applied on soybean in field and their control effects against the soybean bacterial pustule were tested. The foliar application of streptomycin sulfate + oytetracyclin WP and oxytetracycline WP on the naturally infected soybean (Taekwangkong) showed high control value (above 70%). Therefore, it is concluded that the bactericides used in this study showed strong inhibitory effect to soybean bacterial pustule and they can be recommend to farmers to control the disease.