• Title, Summary, Keyword: Crack Propagation Criterion

Search Result 59, Processing Time 0.035 seconds

A Study on the Interfacial Crack Propagation Criterion for Two Dissimilar Isotropic Bimaterial by the Static Photoelastic Experimental Hybrid Method (정적 광탄성 실험 하이브리드 법에 의한 두 상이한 등방성 이종재료의 계면균열전파 기준에 관한 연구)

  • Tche, Konstantin;Hawong, Jai-Sug;Shin, Dong-Chul;Nam, Sung-Su;Nam, Jeong-Hwan
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.1216-1221
    • /
    • 2003
  • The specimen materials used in this research is bimaterial. The static photoelastic experiment was applied to them. And then the specimens used in photoelastic experiment were fractured under static load. The static photoelastic hybrid method was introduced and it's validity had been assured. The static photoelastic hybrid method was applied to the Minimum Strain Energy Density Criterion, the Maximum Tangential Stress Criterion and Mode Mixity. Crack propagation criterion by the static photoelastic hybrid method was introduced and it was applied to the above various failure theories. Comparing the experimental initial angle of crack propagation with the theoretical initial angle of crack propagation from the various failure criterions. And then the optimal crack propagation criterion was suggested and it's validity was assured.

  • PDF

Application of the Static Photoelastic Experimental Hybrid Method to the Crack Propagation Criterion for Isotropic Materials (등방성체의 균열전파 기준에 정적 광탄성 실험 하이브리드 법 적용)

  • Shin Dong-Chul;Hawong Jai-Sug;Nam Sung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8
    • /
    • pp.1229-1236
    • /
    • 2004
  • The specimen materials used in this research are isotropic epoxy resins. The static photoelastic experiment was applied to them. And then the specimens used in photoelastic experiment were fractured under static load. The static photoelastic experimental hybrid method was introduced and its validity had been assured. Crack propagation criterion used the stress components, which are considered the higher order terms, obtained from the static photoelastic experimental hybrid method was introduced and it was applied to the minimum strain energy density criterion, the maximum tangential stress criterion and mode mixity. Comparing the actual initial angle of crack propagation with the theoretical initial angle of crack propagation obtained from the above failure criterions, the validities of the above two criterions are assured and the optimal distance (r) from the crack-tip is 0.01mm in order to get the initial angle of crack propagation of isotropic epoxy resin.

A Study on the Crack Propagation Criterion of Orthotropic Material by the Static Photoelastic Experimental Hybrid Method (정적 광탄성 실험 하이브리드법에 의한 직교이방성체의 균열전파 기준에 관한 연구)

  • Shin, Dong-Chul;Hawong, Jai-Sug;Nam, Sung-Su;Kwon, O-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1799-1806
    • /
    • 2004
  • The static photoelastic experiment was applied to orthotropic materials. And then the specimens used in photoelastic experiment were fractured under static load. The static photoelastic experimental hybrid method for orthotropic material was introduced and its validity had been assured. Crack propagation criterion used the stress components, which are considered the higher order terms, obtained from the static photoelastic experimental hybrid method was introduced and it was applied to the minimum strain energy density criterion, the maximum tangential stress criterion and mode mixity. Comparing the actual initial angle of crack propagation with the theoretical initial angle of crack propagation obtained from the above failure criterions, the validities of the above two criterions are assured and the optimal distance (${\gamma}$) from the crack-tip is 0.01mm in order to get the initial angle of crack propagation of orthotropic material(C.F.E.C.).

MIXED-MODE CRACK PROPAGATION BY MOVABLE CELLULAR AUTOMATA METHOD

  • Pak, Mik-Hail;Lee, Choon-Yeol;Chai, Young-Suck
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.1754-1759
    • /
    • 2007
  • Propagation of a mixed-mode crack in Soda-Lime silica glass using Movable Cellular Automata (MCA) method is demonstrated in this study. In MCA method, special fracture criterion is used to describe the process of crack initiation and propagation. Comparison between MCA and other crack initiation criteria results are made. The crack resistance curves and bifurcation angles under different loading angles are found. In comparisons with results of maximum circumferential tensile stress criterion, MCA result showed the sufficient agreement.

  • PDF

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

A Study on the Initial Crack Curving Angle of Isotropic/Orthotropic Bimaterial

  • Hawong, Jai-Sug;Shin, Dong-Chul;Lee, Ouk-Sub
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1594-1603
    • /
    • 2002
  • In this paper, when the initial propagation angle of a branched crack is calculated from the maximum tangential stress criterion (MTSC) and the minimum strain energy density criterion (MSEDC), it is essential that you use stress components in which higher order terms are considered and stress components at the position in a distance 0.005㎜ from the crack tip (=r). When an interfacial crack propagates along the interface at a constant velocity, the initial propagation angles of the branched crack are similar. to the mode mixities (phase angle) and the theoretical values obtained from MTSC and MSEDC. The initial propagation angle of the branched crack depends considerably on the stress intensity factor K$_2$.

Analysis of Mixed-mode Crack Propagation by the Movable Cellular Automata Method

  • Chai, Young-Suck;Lee, Choon-Yeol;Pak, Mikhail
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.66-70
    • /
    • 2008
  • The propagation of a mixed-mode crack in soda-lime silica glass is modeled by movable cellular automata (MCA). In this model, a special fracture criterion is used to describe the process of crack initiation and propagation. The results obtained using the MCA criterion are compared to those obtained from other crack initiation criteria, The crack resistance curves and bifurcation angles are determined for various loading angles. The MCA results are in close agreement with results obtained using the maximum circumferential tensile stress criterion.

On the mixed-mode crack propagation in FGMs plates: comparison of different criteria

  • Nabil, Benamara;Abdelkader, Boulenouar;Miloud, Aminallah;Noureddine, Benseddiq
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.371-379
    • /
    • 2017
  • Modelling of a crack propagating through a finite element mesh under mixed mode conditions is of prime importance in fracture mechanics. In this paper, two crack growth criteria and the respective crack paths prediction in functionally graded materials (FGM) are compared. The maximum tangential stress criterion (${\sigma}_{\theta}-criterion$) and the minimum strain energy density criterion (S-criterion) are investigated using advanced finite element technique. Using Ansys Parametric Design Language (APDL), the variation continues in the material properties are incorporated into the model by specifying the material parameters at the centroid of each finite element. In this paper, the displacement extrapolation technique (DET) proposed for homogeneous materials is modified and investigated, to obtain the stress intensity factors (SIFs) at crack-tip in FGMs. Several examples are modeled to evaluate the accuracy and effectiveness of the combined procedure. The effect of the defects on the crack propagation in FGMs was highlighted.

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length (혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동)

  • 정의효
    • Journal of The Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

Fatigue Crack Propagation Behavior in STS304 under Mixed Mode Loading (혼합모드 하중에서의 STS304의 피로균열 전과거동)

  • Song, Sam-Hong;Lee, Jeong-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.131-139
    • /
    • 2001
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failure occur from cracks subjected to mixed mode loadings. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. Under mixed mode loading conditions, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method. The propagation behavior of the fatigue crack of the STS304 steeds under mixed mode loading condition was evacuated by using stress intensity factors $K_I$ and $K_II. The MTS criterion and effective stress intensity factor were applied to predict the crack propagation direction and the fatigue crack propagation rate.

  • PDF