• Title, Summary, Keyword: Cylinder contact

Search Result 156, Processing Time 0.04 seconds

Assessment of Visual satisfaction & Visual Function with Prescription Swimming goggles In-air and Underwater (도수 수경 착용시 실내와 수중에서의 시각적 만족도 및 시력 평가)

  • Chu, Byoung-Sun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.357-363
    • /
    • 2013
  • Purpose: To investigate the visual function with prescription swimming goggles. Methods: 15 university students (mean age: $22{\pm}1.54$ years) participated, with a mean distance refractive error of RE: S-1.67 D/C-0.40 D, LE: S-1.70D/C-0.37 D. Inclusion criteria were no ocular pathology, able to wear soft contact lenses to correct their refractive error to emmetropia and able to swim. Participants were fitted with contact lenses to correct all ametropia. Subjective evaluation for satisfaction of visual acuity, asthenopia and balance were also measured using a questionnaire while wearing swimming goggles with cylinder (C+1.50 D, Ax $90^{\circ}$) compared with plano sphere outside the swimming pool area. Visual acuity was assessed using the same ETDRS chart. The prescription swimming goggles powers were assessed in random order and ranged in power from S+3.00 D to S-3.00 D in 0.50 D steps. Results: Subjective evaluation was significantly worse for the swimming goggles with cylinder than for the plano powered goggles for all 3 questions, visual acuity, asthenopia and balance. Visual acuity were significantly affected by the different power of the swimming goggles (p<0.05), but there was no significant difference between the in-air in-clinic and underwater in-swimming pool measures (p=0.173). However, visual acuity measured in the clinic was significantly better than underwater for some swimming goggle powers (+3.00, +1.00, +0.50, 0, -1.00 and -2.00 D). Conclusions: Wearing swimming goggles underwater may degrade the visual acuity compared to within air but as the difference is less than 1 line of Snellen acuity, and it is unlikely to result in significant real-life effects. Having an incorrect cylinder correction was found to be detrimental resulting in lower score of satisfaction. Considering slippery floor of swimming pool area, it can be a potential risk factor. Therefore, it is important to correct any refractive error in addition to astigmatism for swimming goggle.

Study on the Control and Topographical Recognition of an Underwater Rubble Leveling Robot for Port Construction (항만공사용 사석 고르기 수중로봇의 제어 및 지형인식에 관한 연구)

  • Kim, Tae-Sung;Kim, Chi-Hyo;Lee, Jin-Hyung;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.42 no.3
    • /
    • pp.237-244
    • /
    • 2018
  • When underwater rubble leveling work is carried out by a robot, real-time information on the topography around the robot is required for remote control. If the topographical information with respect to the current position of the robot is displayed as a 3D graphic image, it allows the operator to plan the working schedules and to avoid accidents like rollovers. Up until now, the topographical recognition was conducted by multi-beam sonars, which were only used to assess the quality before and after the work and could not be used to provide real-time information for remote control. This research measures the force delivered to the bucket which presses the mound to determine whether contact is made or not, and the contact position is calculated by reading the cylinder length. A variable bang-bang control algorithm is applied to control the heavy robot arms for the positioning of the bucket. The proposed method allows operators to easily recognize the terrain and intuitively plan the working schedules by showing relatively 3-D gratifications with respect to the robot body. In addition, the operating patterns of a skilled operator are programmed for raking, pushing, moving, and measuring so that they are automatically applied to the underwater rubble leveling work of the robot.

Data Qualification of Optical Emission Spectroscopy Spectra in Resist/Nitride/Oxide Etch: Coupon vs. Whole Wafer Etching

  • Kang, Dong-Hyun;Pak, Soo-Kyung;Park, George O.;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.433-433
    • /
    • 2012
  • As the requirement in patterning geometry continuously shrinks down, the termination of etch process at the exact time became crucial for the success in nano patterning technology. By virtue of real-time optical emission spectroscopy (OES), etch end point detection (EPD) technique continuously develops; however, it also faced with difficulty in low open ratio etching, typically in self aligned contact (SAC) and one cylinder contact (OCS), because of very small amount of optical emission from by-product gas species in the bulk plasma glow discharge. In developing etching process, one may observe that coupon test is being performed. It consumes costs and time for preparing the patterned sample wafers every test in priority, so the coupon wafer test instead of the whole patterned wafer is beneficial for testing and developing etch process condition. We also can observe that etch open area is varied with the number of coupons on a dummy wafer. However, this can be a misleading in OES study. If the coupon wafer test are monitored using OES, we can conjecture the endpoint by experienced method, but considering by data, the materials for residual area by being etched open area are needed to consider. In this research, we compare and analysis the OES data for coupon wafer test results for monitoring about the conditions that the areas except the patterns on the coupon wafers for real-time process monitoring. In this research, we compared two cases, first one is etching the coupon wafers attached on the carrier wafer that is covered by the photoresist, and other case is etching the coupon wafers on the chuck. For comparing the emission intensity, we chose the four chemical species (SiF2, N2, CO, CN), and for comparing the etched profile, measured by scanning electron microscope (SEM). In addition, we adopted the Dynamic Time Warping (DTW) algorithm for analyzing the chose OES data patterns, and analysis the covariance and coefficient for statistical method. After the result, coupon wafers are over-etched for without carrier wafer groups, while with carrier wafer groups are under-etched. And the CN emission intensity has significant difference compare with OES raw data. Based on these results, it necessary to reasonable analysis of the OES data to adopt the pre-data processing and algorithms, and the result will influence the reliability for relation of coupon wafer test and whole wafer test.

  • PDF

An Electron Microscopic Study on the Main Sensory Trigeminal Nucleus in the Aging Rat Brain (노화된 흰쥐 뇌 삼차신경주감각핵에 관한 전자현미경적 연구)

  • Kim, Myung-Kook
    • Applied Microscopy
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 1995
  • The purpose of this study was to investigate the main sensory trigeminal nucleus in the aging rat brain by means of electron microscope. Male Sprague-Dawley rats, two (control group) and thirty six (aging group) months of age, were used. These animals were sacrificed by perfusion fixation with 2.5% glutaraldehyde-2.0% paraformaldehyde (0.1M phosphate buffer, pH 7.4) under sodium pentobarbital. The objective area was punched out with a sharp-edged metal cylinder of 0.8 mm in diameter. These blocks of tissue were then washed in 0.1M phosphate buffer, postfixed in 2% osmium tetroxide, dehydrated in a graded series of ethyl alcohol, and embedded in Epon 812. Thin sections were cut with Super Nova ultramicrotome, pick up on grids and double stained with lead citrate and uranyl acetate, and observed in JEOL 100B electron microscope. The results were as follows: 1. In the control group, the neuronal cell body of the main sensory trigeminal nucleus was filled with nucleus, Golgi complex, Nissl substance, mitochondria, microfilaments and microtubules. However, few Nissl substances are seen in neuronal cell body. Axoaxonic synapse, axodendritic synapse, axosomatic synapse, axospinous synapse, myelinated and unmyelinated nerve fibers were well organized around cell bodies. Neurons with abnormal changes were not seen. 2. In the aging group, the neuronal cell body of the main sensory trigeminal nucleus contained large number of lipofuscin granules, dense body and swollen mitochondria. Terminal boutons contained glycogen, crystal-like vesicle and membranous indicating first signs of degeneration. The dendrites were found to be in synaptic contact with altered axon terminals. Frequently axons filled with dark axoplasn and splitted myelin sheath were noticed.

  • PDF

Superhydrophobic nano-hair mimicking for water strider leg using CF4 plasma treatment on the 2-D and 3-D PTFE patterned surfaces

  • Shin, Bong-Su;Moon, Myoung-Woon;Kim, Ho-Young;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.365-365
    • /
    • 2010
  • Similar to the superhydrophobic surfaces of lotus leaf, water strider leg is attributed to hierarchical structure of micro pillar and nano-hair coated with low surface energy materials, by which water strider can run and even jump on the water surface. In order to mimick its leg, many effort, especially, on the fabrication of nanohairs has been made using several methods such as a capillarity-driven molding and lithography using poly(urethane acrylate)(PUA). However most of those effort was not so effective to create the similar structure due to its difficulty in the fabrication of nanoscale hairy structures with hydrophobic surface. In this study, we have selected a low surface energy polymeric material of polytetrafluoroethylene (PTFE, or Teflon) assisted with surface modification of CF4 plasma treatment followed by hydrophobic surface coating with pre-cursor of hexamethyldisiloxane (HMDSO) using a plasma enhanced chemical vapor deposition (PE-CVD). It was found that the plasma energy and duration of CF4 treatment on PTFE polymer could control the aspect ratio of nano-hairy structure, which varying with high aspect ratio of more than 20 to 1, or height of over 1000nm but width of 50nm in average. The water contact angle on pristine PTFE surface was measured as approximately $115^{\circ}$. With nanostructures by CF4 plasma treatment and hydrophobic coating of HMDSO film, we made a superhydrophobic nano-hair structure with the wetting angle of over $160^{\circ}C$. This novel fabrication method of nanohairy structures has been applied not only on 2-D flat substrate but also on 3-D substrates like wire and cylinder, which is similarly mimicked the water strider's leg.

  • PDF

Evaluation of the Effect of Riser Support System on Global Spar Motion by Time-domain Nonlinear Hull/Mooring/Riser Coupled Analysis

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5
    • /
    • pp.16-25
    • /
    • 2005
  • The effect of vertical riser support system on the dynamic behaviour of a classical spar platform is investigated. Spar platform generally uses buoyancy-can riser support system, but as water depth gets deeper the alternative riser support system is required due to safety and cost issues. The alternative riser support system is to hang risers off the spar platform using pneumatic cylinders rather than the buoyancy-can. The existing numerical model for hull/mooring/riser coupled dynamics analysis treats riser as an elastic rod truncated at the keel (truncated riser model), thus, in this model, the effect of riser support system can not be modeled correctly. Due to this reason, the truncated riser model tends to overestimate the spar pitch and heave motion. To evaluate more realistic global spar motion, mechanical coupling among risers, guide frames and support cylinders inside of spar moon-pool should be modeled. In the newly developed model, the risers are extended through the moon-pool by using nonlinear finite element methods with realistic boundary condition at multiple guide frames. In the simulation, the vertical tension from pneumatic cylinders is modeled by using ideal-gas equation and the vertical tension from buoyancy-cans is modeled as constant top tension. The different dynamic characteristics between buoyancy-can riser support system and pneumatic riser support system are extensively studied. The alternative riser support system tends to increase spar heave motion and needs damper system to reduce the spar heave motion.

3D feature profile simulation for nanoscale semiconductor plasma processing

  • Im, Yeon Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.61.1-61.1
    • /
    • 2015
  • Nanoscale semiconductor plasma processing has become one of the most challenging issues due to the limits of physicochemical fabrication routes with its inherent complexity. The mission of future and emerging plasma processing for development of next generation semiconductor processing is to achieve the ideal nanostructures without abnormal profiles and damages, such as 3D NAND cell array with ultra-high aspect ratio, cylinder capacitors, shallow trench isolation, and 3D logic devices. In spite of significant contributions of research frontiers, these processes are still unveiled due to their inherent complexity of physicochemical behaviors, and gaps in academic research prevent their predictable simulation. To overcome these issues, a Korean plasma consortium began in 2009 with the principal aim to develop a realistic and ultrafast 3D topography simulator of semiconductor plasma processing coupled with zero-D bulk plasma models. In this work, aspects of this computational tool are introduced. The simulator was composed of a multiple 3D level-set based moving algorithm, zero-D bulk plasma module including pulsed plasma processing, a 3D ballistic transport module, and a surface reaction module. The main rate coefficients in bulk and surface reaction models were extracted by molecular simulations or fitting experimental data from several diagnostic tools in an inductively coupled fluorocarbon plasma system. Furthermore, it is well known that realistic ballistic transport is a simulation bottleneck due to the brute-force computation required. In this work, effective parallel computing using graphics processing units was applied to improve the computational performance drastically, so that computer-aided design of these processes is possible due to drastically reduced computational time. Finally, it is demonstrated that 3D feature profile simulations coupled with bulk plasma models can lead to better understanding of abnormal behaviors, such as necking, bowing, etch stops and twisting during high aspect ratio contact hole etch.

  • PDF

Forming of Dome and Inlet Parts of a High Pressure CNG Vessel by the Hot Spinning Process (열간 스피닝 공정을 통한 CNG 고압용기의 돔 및 입구 부 성형)

  • Lee, Kwang O;Park, Gun Young;Kwak, Hyo Seo;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.887-894
    • /
    • 2016
  • The CNG pressure vessel is manufactured by a deep drawing and ironing (D.D.I) process for forming cylinder parts, followed by a spinning process for formation of the dome part. However, studies on the buckling phenomenon of the dome part and formation of the inlet part have not been performed yet, and the CNG pressure vessel is produced by the experience of the field engineers and the trial and error method. In this study, buckling phenomenon during the spinning process was predicted by comparing critical buckling loads obtained through theoretical analysis with axial loads from the FEA, and a method for preventing buckling of the dome part was proposed by employing commercial software (Forge NxT 1.0.2). Also, to form the inlet part, forming loads of the roller at contact point between the roller and the dome part were analyzed according to radii of the dome part, and the inlet part was formed by controlling the radius of the dome part.

Tapered Joint Design for Power Transmission of MW-grade Wind Turbine (MW급 풍력발전기 동력전달용 테이퍼 연결장치 설계에 관한 연구)

  • Kang, JongHun;Bae, JunWoo;On, Hanyong;Kwon, Yongchul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1183-1189
    • /
    • 2015
  • This study focuses on the design of the tapered joints of a wind power turbine. The main variables of the tapered joint are the transmitted torque, shaft diameter, contact area of the tapered ring, and tightening torque of the bolts, which applies a compressive pressure from the hub to the shaft. The stress distribution of the taper fit was calculated under axisymmetric plane strain conditions because of the small taper angle. The axial displacement of the clamp can be calculated from the radial elastic deformation and the taper angle. The stress field of each ring is obtained from the cylinder stress equation. To verify the accuracy of the calculation, finite element (FE) analysis was performed, and the results of the calculation and FE analysis were compared. The hoop stress of the tapered surface showed a discrepancy of approximately 10, but the trends of the stress distributions of each component and the relative movement obtained by FE analysis were in good agreement with the analytical calculation results.

Theoretical and Computational Analyses of Bernoulli Levitation Flows (베르누이 부상유동의 이론해석 및 수치해석 연구)

  • Nam, Jong Soon;Kim, Gyu Wan;Kim, Jin Hyeon;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.629-636
    • /
    • 2013
  • Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-${\omega}$ turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, workpiece diameter,and clearance gap between the workpiece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force.