• Title, Summary, Keyword: Czochralski silicon crystal

Search Result 54, Processing Time 0.092 seconds

Numerical Study of Melt Flow Pattern by Thermal Gradient of the Crucible in the Czochralski Process (초크랄스키법에서 도가니의 온도구배가 유동장에 미치는 영향에 대한 수치해석 연구)

  • Park, Jong-In;Han, Jeong-Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.734-739
    • /
    • 2009
  • It is well known that the temperature and the flow pattern of the crystal-melt interface affect the qualities of the single crystal in the Czochralski process. Thus the temperature profile in the growth system is very important information. This work focuses on controlling the temperature of the silicon melt with a thermal gradient of the crucible. Therefore, the side heater is divided into three parts and an extra heater is added at the bottom for thermal gradient. The temperature of the silicon melt can be strongly influenced and controlled by the electric power of each heater.

A NUMERICAL ANALYSIS OF CZOCHRALSKI SINGLE CRYSTAL GROWTH OF SILICON WITH MISALIGNED CUSP MAGNETIC FIELDS (Misaligned된 비균일자장이 인가된 초크랄스키 실리콘 단결정성장에 대한 수치적 해석)

  • Kim, Chang Nyung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.121-131
    • /
    • 2000
  • Melt flow, heat and mass transfer of oxygen have been analyzed numerically in the process of Czochralski single crystal growth of silicon under the influence of misaligned cusp magnetic fields. Since the silicon melt in a crucible for crystal growth is of high temperature and of highly electrical-conducting, experimentation method has difficulty in analyzing the behavior of the melt flow. A set of simultaneous nonlinear equations including Navier-Stokes and Maxwell equations has been used for the modelling of the melt flow which can be regarded as a liquid metal. Together with the melt flow which forms the Marangoni convection, a flow circulation is observed near the comer close both to the crucible wall and the free surface. The melt flow tends to follow the magnetic lines instead of traversing the lines. These flow characteristics helps the flow circulation exist. Mass transfer characteristics influenced by the melt flow has been analyzed and the oxygen absorption rate to the crystal has been calculated and turned out to be rather uniform than in the case of an aligned magnetic field.

  • PDF

A Study on the Creative Design of Pulling Module for Silicon Ingot and an Apparatus of Manufacturing Silicon Single Crystal Ingot by using TRIZ(6SC) (TRIZ(6SC)를 활용한 잉곳 인상모듈 및 실리콘 단결정 잉곳 제조장치의 창의적 설계)

  • Hong, Sung Do;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.39-43
    • /
    • 2012
  • This paper presents a study on the design of a pulling module for silicon ingot and an apparatus of manufacturing silicon single crystal ingot using the same method. The pulling module is conceptually designed by using TRIZ. Czochralski method(CZ) is representative way to manufacture single crystal ingot for wafers. The seed can be broken by high tension which is caused by large weight of a silicon ingot. The solution of this problem has been derived using 6SC(6 steps creativity)TRIZ. The pulling module is actuated by DC motor and rollers. High tension in the seed is removed by the rotate-elevate motion of rollers in the pulling module. A rubber belt is included in the rotate-elevate mechanism for increasing friction between rollers and silicon ingot.

Understanding of the effect of charge size to temperature profile in the Czochralski method (쵸크랄스키법에서 온도 프로파일에 대한 충진사이즈의 효과에 대한 이해)

  • Baik, Sungsun;Kwon, Sejin;Kim, Kwanghun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.4
    • /
    • pp.141-147
    • /
    • 2018
  • Solar energy has attracted big attentions as one of clean and unlimited renewable energy. Solar energy is transformed to electrical energy by solar cells which are comprised of multi-silicon wafer or mono-silicon wafer. Monosilicon wafers are fabricated from the Czochralski method. In order to decrease fabrication cost, increasing a poly-silicon charge size in one quartz crucible has been developed very much. When we increase a charge size, the temperature control of a Czochralski equipment becomes more difficult due to a strong melt convection. In this study, we simulated a Czochralski equipment temperature at 20 inch and 24 inch in quartz crucible diameter and various charge sizes (90 kg, 120 kg, 150 kg, 200 kg, 250 kg). The simulated temperature profiles are compared with real temperature profiles and analyzed. It turns out that the simulated temperature profiles and real temperature profiles are in good agreement. We can use a simulated profile for the optimization of real temperature profile in the case of increasing charge sizes.

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal (초크랄스키 실리콘 단결정에서 성장 쌍정과 결정 외형의 관계)

  • 박봉모
    • Korean Journal of Crystallography
    • /
    • v.11 no.4
    • /
    • pp.207-211
    • /
    • 2000
  • In a Czochralski silicon single crystal, the relation between the growth twin and the crystal morphology was investigated. The growth twin is nucleated on the {111} facet planes near the growth ridges. When a {111} growth twin is formed in the <100> silicon crystal, the growth ridge where twin is nucleated will continuous through the twin plane. Other two ridges at the 90。 apart will be displaced about 33° and be deformed to facets. The ridge on the opposite side of twin nucleation will disappear by forming a slight hill. Because the growth ridges of silicon is due to the {111} planes, the variation in the growth ridge formation can be predicted clearly by considering the change of the {111} plane traces in the stereographic projection after twining.

  • PDF

Macroscopic and microscopic mass transfer in silicon czochralski method

  • Kakimoto, Koichi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.381-383
    • /
    • 1999
  • First topic of this paper aims to clarify how oxygen and heat transfer in silicon melt under cusp-shaped magnetic fields. We obtained asymmetric temperature distribution by using time dependent and three-dimensional calculation. Second topic is study on molecular dynamics simulation, which was carried out to estimate diffusion constants of oxygen in silicon melt.

  • PDF

Two dimensional analysis of axial segregation by convection-diffusion model in batchwise and continuous Czochralski process

  • Wang, Jong-Hoe;Kim, Do-Hyun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • /
    • pp.117-121
    • /
    • 1997
  • It is shown theoretically that uniform axial dopant concentration distribution can be made throughout the crystal by continuous Czochralski process. Numerical simulation are performed for the transient two-dimensional convection-diffusion model. A typical value of the growth and system parameters for Czochralski growth of p-type, 4 inches silicon crystal was used in the numerical calculations. Using this model with proper model parameter, the axial segregation in batchwise Czochralski growth can be described. It is studied by comparing with the experimental data. With this model parameter, the uniform axial concentration distribution of dopant is predicted in continuous Czochralski process.

  • PDF

Effect of applied magnetic fields on oxygen transport in magnetic Czochralski growth of silicon (Czochralski 방법에 의한 실리콘 단결정 성장에서 자장에 의한 산소의 전달 현상 제어)

  • Chang Nyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.210-222
    • /
    • 1994
  • The characteristics of flows, temperatures, and concentrations of oxygen are numerically studies in the Czochralski furnace with a uniform axial magnetic field. Important governing factors to the flow fields include buoyancy, thermocapillarity, centrifugal force, magnetic force, diffusion and segregation coefficients of the oxygen, evaporation coefficient in the form of SiO, and ablation rate of crucible wall. With an assumption that the flow fields have reached the steady state, which means that two velocity components in the meridional plane and circumferential velocity, temperatures, electric current intensity become non-transient, then unsteady concentration field of oxygen has been analyzed with an initially uniform oxygen concentration. Oxygen transports due to convection and diffusion in the Czochralski flow field and oxygen flux through the growing crystal surface has been investigated.

  • PDF

Modelling of transport phenomena and meniscus shape in Czochralski growth of silicon material

  • Bae, Sun-Hyuk;Wang, Jong-Hoe;Kim, Do-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.454-458
    • /
    • 1999
  • Hydrodynamic Thermal Capilary Model developed previously has been modified to study the transport phenomena in the Czochralski process. Our analysis is focused on the heat transfer in the system, convection in the melt phase, and the meniscus and interface shape. Four major forces drive melt flow in the crucible, which include thermal buoyancy force in the melt, thermocapillary force along the curved meniscus, crucible rotation and crystal rotation. Individual flow mechanism due to each driving force has been examined to determine its interaction with the meniscus and interface shape. A nominal 4-inch-diameter silicon crystal growth process is chosen as a subject for analysis. Heater temperature profile for constant diameter crystal is also present as a function of crystal height or fraction solidified.

  • PDF

The Effect of an Axial Magnetic Field on Czochralski Growth of Silicon (초크랄스키법에 의한 실리콘 단결정 성장시 축방향 자기장의 영향)

  • 정형태;한승호;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 1993
  • A suppression of turbulent fluid motion and a control of oxygen and dopants could be improved by application of magnetic field in Czochralski growth of silicon. The effect of an axial magnetic field on Czochralski system was numerically calculated. The fluid motions induced by temperature gradients and by crystal and crucible rotations were suppressed by magnetic force. The S/L interface was gradually flattened in proportion to the increase of magnetic field due to a reduced ascending velocity in the vicinity of center line. The t.emperature distributions in the melt at 8=0.3 Tesla were similar to those analyzed by the conduction heat transfer only. The dissipated amounts of heat flux from melt and crystal surfaces by Ar gas blowing was Jess than 3 %.

  • PDF