• Title, Summary, Keyword: Decomposition behavior

Search Result 378, Processing Time 0.049 seconds

Combustion Properties of Woods for Indoor Use (II) (실내 사용 목재의 연소 특성 분석 (II))

  • Seo, Hyun Jeong;Kang, Mee Ran;Son, Dong Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.478-485
    • /
    • 2015
  • The aim of this study is to analyze the combustion and thermal properties in order to establish baseline data for the fire safety evaluation of domestic timbers. The combustion properties such as heat release rate, total heat release, gas yield, and mass loss were analyzed by the method of cone calorimeter test and thermogravimetry (TGA). Thermal decomposition temperatures of the specimens by TGA were recorded as $359.83^{\circ}C$ for White pine, $359.80^{\circ}C$ for Red-Leaved Hornbeam, $363.14^{\circ}C$ for Carolina poplar, $358.59^{\circ}C$ for Konara oak, and $362.11^{\circ}C$ Sargent cherry. Red-Leaved Hornbeam showed the highest value of heat release rate, but, Carolina poplar wood showed the lowest value. In case of the total heat release, Red-Leaved Hornbeam wood showed the highest value and Carolina poplar wood showed the lowest one. The gas analysis results showed that Sargent cherry wood had the lowest value of 0.021, and Konara oak had the highest at 0.031 in the $CO/CO_2$. The minimum value of mass reduction was recorded as 87.57% for Sargent cherry, but, on the other hand, it was 95.03% for Konara oak. There was a correlation between the gas generation of CO and $CO_2$, and combustion behavior of woods. These results are expected to be usful for providing a fundamental guideline with the fire safety of wood use in interior applications.

Organic-inorganic Nanocomposite Adhesive with Improved Barrier Property to Water Vapor for Backsheets of Photovoltaic Modules (태양광모듈용 저가형 백시트 제조를 위한 고수분차단성 유무기 나노복합형 접착제)

  • Hwang, Jin Pyo;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.530-537
    • /
    • 2015
  • Photovoltaic (PV) modules are environmentally energy conversion devices to generate electricity via photovoltaic effect of semiconductors from solar energy. One of key elements in PV modules is "Backsheet," a multilayered barrier film, which determines their lifetime and energy conversion efficiency. The representative Backsheet is composed of chemically resistant poly(vinyl fluoride) (PVF) and cheap poly(ethylene terephthalate) (PET) films used as core and skin materials, respectively. PVF film is too expensive to satisfy the market requirements to Backsheet materials with production cost as low as possible. The promising alternatives to PVF-based Backsheet are hydrocarbon Backsheets employing semi-crystalline PET films instead of PVF film. It is, however, necessary to provide improved barrier property to water vapor to the PET films, since PET films are suffering from hydrolytic decomposition. In this study, a polyurethane adhesive with reduced water vapor permeation behavior is developed via a homogeneous distribution of hydrophobic silica nanoparticles. The modified adhesive is expected to retard the hydrolysis of PET films located in the core and inner skin. To clarify the efficacy of the proposed concept, the mechanical properties and electrochemical PV performances of the Backsheet are compared with those of a Backsheet employing the polyurethane adhesive without the silica nanoparticles, after the exposure under standard temperature and humidity conditions.

Distribution and Behavior of Soil CO2 in Pohang area: Baseline Survey and Preliminary Interpretation in a Candidate Geological CO2 Storage Site (포항 지역 토양 CO2의 분포 및 거동 특성 연구: CO2 지중저장 부지 자연 배경 조사 및 예비 해석)

  • Park, Jinyoung;Sung, Ki-Sung;Yu, Soonyoung;Chae, Gitak;Lee, Sein;Yum, Byoung-Woo;Park, Kwon Gyu;Kim, Jeong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.49-60
    • /
    • 2016
  • Distribution and behavior of baseline soil CO2 were investigated in a candidate geologic CO2 storage site in Pohang, with measuring CO2 concentrations and carbon isotopes in the vadose zone as well as CO2 fluxes and concentrations through ground surface. This investigation aimed to assess the baseline CO2 levels and to build the CO2 monitoring system before injecting CO2. The gas in the vadose zone was collected using a peristaltic pump from the depth of 60 cm below ground surface, and stored at gas bags. Then the gas components (CO2, O2, N2, CH4) and δ13CCO2 were analyzed using GC and CRDS (cavity ringdown spectroscopy) respectively in laboratory. CO2 fluxes and CO2 concentrations through ground surface were measured using Li-COR in field. In result, the median of the CO2 concentrations in the vadose zone was about 3,000 ppm, and the δ13CCO2 were in the wide range between −36.9‰ and −10.6‰. The results imply that the fate of CO2 in the vadose zone was affected by soil property and vegetations. CO2 in sandy or loamy soils originated from the respiration of microorganisms and the decomposition of C3 plants. In gravel areas, the CO2 concentrations decreased while the δ13CCO2 increased because of the mixing with the atmospheric gas. In addition, the relation between O2 and CO2, N2, and the relation between N2/O2 and CO2 implied that the gases in the vadose zone dissolved in the infiltrating precipitation or the soil moisture. The median CO2 flux through ground surface was 2.9 g/m2/d which is lower than the reported soil CO2 fluxes in areas with temperate climates. CO2 fluxes measured in sandy and loamy soil areas were higher (median 5.2 g/m2/d) than those in gravel areas (2.6 g/m2/d). The relationships between CO2 fluxes and concentrations suggested that the transport of CO2 from the vadose zone to ground surface was dominated by diffusion in the study area. In gravel areas, the mixing with atmospheric gases was significant. Based on this study result, a soil monitoring procedure has been established for a candidate geologic CO2 storage site. Also, this study result provides ideas for innovating soil monitoring technologies.

Perfluoropolymer Membranes of Tetrafluoroethylene and 2,2,4Trifluofo- 5Trifluorometoxy- 1,3Dioxole.

  • Arcella, V.;Colaianna, P.;Brinati, G.;Gordano, A.;Clarizia, G.;Tocci, E.;Drioli, E.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • /
    • pp.39-42
    • /
    • 1999
  • Perfluoropolymers represent the ultimate resistance to hostile chemical environments and high service temperature, attributed to the presence of fluorine in the polymer backbone, i.e. to the high bond energy of C-F and C-C bonds of fluorocarbons. Copolymers of Tetrafluoroethylene (TEE) and 2, 2, 4Trifluoro-5Trifluorometoxy- 1, 3Dioxole (TTD), commercially known as HYFLON AD, are amorphous perfluoropolymers with glass transition temperature (Tg)higher than room temperature, showing a thermal decomposition temperature exceeding 40$0^{\circ}C$. These polymer systems are highly soluble in fluorinated solvents, with low solution viscosities. This property allows the preparation of self-supported and composite membranes with desired membrane thickness. Symmetric and asymmetric perfluoropolymer membranes, made with HYFLON AD, have been prepared and evaluated. Porous and not porous symmetric membranes have been obtained by solvent evaporation with various processing conditions. Asymmetric membranes have been prepared by th wet phase inversion method. Measure of contact angle to distilled water have been carried out. Figure 1 compares experimental results with those of other commercial membranes. Contact angles of about 120$^{\circ}$for our amorphous perfluoropolymer membranes demonstrate that they posses a high hydrophobic character. Measure of contact angles to hexandecane have been also carried out to evaluate the organophobic character. Rsults are reported in Figure 2. The observed strong organophobicity leads to excellent fouling resistance and inertness. Porous membranes with pore size between 30 and 80 nanometers have shown no permeation to water at pressures as high as 10 bars. However high permeation to gases, such as O2, N2 and CO2, and no selectivities were observed. Considering the porous structure of the membrane, this behavior was expected. In consideration of the above properties, possible useful uses in th field of gas- liquid separations are envisaged for these membranes. A particularly promising application is in the field of membrane contactors, equipments in which membranes are used to improve mass transfer coefficients in respect to traditional extraction and absorption processes. Gas permeation properties have been evaluated for asymmetric membranes and composite symmetric ones. Experimental permselectivity values, obtained at different pressure differences, to various single gases are reported in Tab. 1, 2 and 3. Experimental data have been compared with literature data obtained with membranes made with different amorphous perfluoropolymer systems, such as copolymers of Perfluoro2, 2dimethyl dioxole (PDD) and Tetrafluorethylene, commercialized by the Du Pont Company with the trade name of Teflon AF. An interesting linear relationship between permeability and the glass transition temperature of the polymer constituting the membrane has been observed. Results are descussed in terms of polymer chain structure, which affects the presence of voids at molecular scale and their size distribution. Molecular Dyanmics studies are in progress in order to support the understanding of these results. A modified Theodoru- Suter method provided by the Amorphous Cell module of InsightII/Discover was used to determine the chain packing. A completely amorphous polymer box of about 3.5 nm was considered. Last but not least the use of amorphous perfluoropolymer membranes appears to be ideal when separation processes have to be performed in hostile environments, i.e. high temperatures and aggressive non-aqueous media, such as chemicals and solvents. In these cases Hyflon AD membranes can exploit the outstanding resistance of perfluoropolymers.

  • PDF

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery of Non-Accessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Proceedings of the KSRS Conference
    • /
    • /
    • pp.140-148
    • /
    • 2001
  • The satellite sensor model is typically established using ground control points acquired by ground survey Of existing topographic maps. In some cases where the targeted area can't be accessed and the topographic maps are not available, it is difficult to obtain ground control points so that geospatial information could not be obtained from satellite image. The paper presents several satellite sensor models and satellite image decomposition methods for non-accessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then the behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in 1$^{st}$, 2$^{nd}$ and 3$^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\phi$(phi) correlated highly with positional parameters could be assigned to constant values. For non-accessible area, satellite images were decomposed, which means that two consecutive images were combined as one image. The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1$^{st}$ order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

  • PDF

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery for Inaccessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.33-44
    • /
    • 2001
  • The paper presents several satellite models and satellite image decomposition methods for inaccessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in $1^{st}$, $2^{nd}$ and $3^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\Phi$(phi) correlated highly with positional parameters could be assigned to constant values. For inaccessible area, satellite images were decomposed, which means that two consecutive images were combined as one image, The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1st order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

  • PDF

Materialistic Characterization of Waste Egg Shell and Fundamental Studies for Its Application to Wastewater Treatment (폐달걀껍질의 활용을 위한 물성조사 및 폐수처리 응용에의 기초연구)

  • Kuh, Sung-Eun;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.733-742
    • /
    • 2000
  • Fundamental materialistic characterization and adsorption/neutralization behavior of waste egg shell for heavy metal ion have been studied for its application to wastewater treatment. To investigate the structural change and thermal decomposition characteristics of egg shell. X-ray diffraction and FT-IR analysis were conducted for egg shell treated at $105^{\circ}C$ and $700^{\circ}C$, respectively. For the result of FT-IR analysis, the sample treated at $700^{\circ}C$ showed a reduced C-O absorption band compared with that of egg shell treated at $105^{\circ}C$, which may be due to the $CO_2$ release. Unlike to the result of FT-IR analysis, the XRD patterns of egg shell were almost similar for the cases of $105^{\circ}C$ and $700^{\circ}C$ treatment. however, characteristic diffraction pattern of CaO was observed for $850^{\circ}C$ treatment, at which $CaCO_3$ is known to be completely converted to CaO. TGA/DTA analysis showed a slow decline in weight loss up to $600^{\circ}C$ and, for $600{\sim}800^{\circ}C$ range, the weight loss became drastic by reason of $CO_2$ discharge, which was accompanied by an appearance of major endothermic peak. The ratio of practical breakthrough time to ideal one, total transfer unit, and mass transfer coefficient were observed to be increased as the adsorption was progressed in a multiple-column fixed-bed reactor using egg shell as an adsorbent, which signified the distribution effect of mass transfer for continuous adsorption reaction. The neutralization effect of egg shell for several types of acidic wastewater made of different mineral acids was not much different from each other except for the case of $H_2SO_4$, for which the neutralization reaction was thought to be retarded by the formation of gypsum.

  • PDF

A Meta Analysis of Using Structural Equation Model on the Korean MIS Research (국내 MIS 연구에서 구조방정식모형 활용에 관한 메타분석)

  • Kim, Jong-Ki;Jeon, Jin-Hwan
    • Asia pacific journal of information systems
    • /
    • v.19 no.4
    • /
    • pp.47-75
    • /
    • 2009
  • Recently, researches on Management Information Systems (MIS) have laid out theoretical foundation and academic paradigms by introducing diverse theories, themes, and methodologies. Especially, academic paradigms of MIS encourage a user-friendly approach by developing the technologies from the users' perspectives, which reflects the existence of strong causal relationships between information systems and user's behavior. As in other areas in social science the use of structural equation modeling (SEM) has rapidly increased in recent years especially in the MIS area. The SEM technique is important because it provides powerful ways to address key IS research problems. It also has a unique ability to simultaneously examine a series of casual relationships while analyzing multiple independent and dependent variables all at the same time. In spite of providing many benefits to the MIS researchers, there are some potential pitfalls with the analytical technique. The research objective of this study is to provide some guidelines for an appropriate use of SEM based on the assessment of current practice of using SEM in the MIS research. This study focuses on several statistical issues related to the use of SEM in the MIS research. Selected articles are assessed in three parts through the meta analysis. The first part is related to the initial specification of theoretical model of interest. The second is about data screening prior to model estimation and testing. And the last part concerns estimation and testing of theoretical models based on empirical data. This study reviewed the use of SEM in 164 empirical research articles published in four major MIS journals in Korea (APJIS, ISR, JIS and JITAM) from 1991 to 2007. APJIS, ISR, JIS and JITAM accounted for 73, 17, 58, and 16 of the total number of applications, respectively. The number of published applications has been increased over time. LISREL was the most frequently used SEM software among MIS researchers (97 studies (59.15%)), followed by AMOS (45 studies (27.44%)). In the first part, regarding issues related to the initial specification of theoretical model of interest, all of the studies have used cross-sectional data. The studies that use cross-sectional data may be able to better explain their structural model as a set of relationships. Most of SEM studies, meanwhile, have employed. confirmatory-type analysis (146 articles (89%)). For the model specification issue about model formulation, 159 (96.9%) of the studies were the full structural equation model. For only 5 researches, SEM was used for the measurement model with a set of observed variables. The average sample size for all models was 365.41, with some models retaining a sample as small as 50 and as large as 500. The second part of the issue is related to data screening prior to model estimation and testing. Data screening is important for researchers particularly in defining how they deal with missing values. Overall, discussion of data screening was reported in 118 (71.95%) of the studies while there was no study discussing evidence of multivariate normality for the models. On the third part, issues related to the estimation and testing of theoretical models on empirical data, assessing model fit is one of most important issues because it provides adequate statistical power for research models. There were multiple fit indices used in the SEM applications. The test was reported in the most of studies (146 (89%)), whereas normed-test was reported less frequently (65 studies (39.64%)). It is important that normed- of 3 or lower is required for adequate model fit. The most popular model fit indices were GFI (109 (66.46%)), AGFI (84 (51.22%)), NFI (44 (47.56%)), RMR (42 (25.61%)), CFI (59 (35.98%)), RMSEA (62 (37.80)), and NNFI (48 (29.27%)). Regarding the test of construct validity, convergent validity has been examined in 109 studies (66.46%) and discriminant validity in 98 (59.76%). 81 studies (49.39%) have reported the average variance extracted (AVE). However, there was little discussion of direct (47 (28.66%)), indirect, and total effect in the SEM models. Based on these findings, we suggest general guidelines for the use of SEM and propose some recommendations on concerning issues of latent variables models, raw data, sample size, data screening, reporting parameter estimated, model fit statistics, multivariate normality, confirmatory factor analysis, reliabilities and the decomposition of effects.