• 제목, 요약, 키워드: Deep Neural Network(DNN)

검색결과 100건 처리시간 0.046초

Deep learning 이론을 이용한 증발접시 증발량 모형화 (Pan evaporation modeling using deep learning theory)

  • 서영민;김성원
    • 한국수자원학회:학술대회논문집
    • /
    • /
    • pp.392-395
    • /
    • 2017
  • 본 연구에서는 일 증발접시 증발량 산정을 위한 딥러닝 (deep learning) 모형의 적용성을 평가하였다. 본 연구에서 적용된 딥러닝 모형은 deep belief network (DBN) 기반 deep neural network (DNN) (DBN-DNN) 모형이다. 모형 적용성 평가를 위하여 부산 관측소에서 측정된 기상자료를 활용하였으며, 증발량과의 상관성이 높은 기상변수들 (일사량, 일조시간, 평균지상온도, 최대기온)의 조합을 고려하여 입력변수집합 (Set 1, Set 2, Set 3)별 모형을 구축하였다. DBN-DNN 모형의 성능은 통계학적 모형성능 평가지표 (coefficient of efficiency, CE; coefficient of determination, $r^2$; root mean square error, RMSE; mean absolute error, MAE)를 이용하여 평가되었으며, 기존의 두가지 형태의 ANN (artificial neural network), 즉 모형학습 시 SGD (stochastic gradient descent) 및 GD (gradient descent)를 각각 적용한 ANN-SGD 및 ANN-GD 모형과 비교하였다. 효과적인 모형학습을 위하여 각 모형의 초매개변수들은 GA (genetic algorithm)를 이용하여 최적화하였다. 그 결과, Set 1에 대하여 ANN-GD1 모형, Set 2에 대하여 DBN-DNN2 모형, Set 3에 대하여 DBN-DNN3 모형이 가장 우수한 모형 성능을 나타내는 것으로 분석되었다. 비록 비교 모형들 사이의 모형성능이 큰 차이를 보이지는 않았으나, 모든 입력집합에 대하여 DBN-DNN3, DBN-DNN2, ANN-SGD3 순으로 모형 효율성이 우수한 것으로 나타났다.

  • PDF

Prediction and Comparison of Electrochemical Machining on Shape Memory Alloy(SMA) using Deep Neural Network(DNN)

  • Song, Woo Jae;Choi, Seung Geon;Lee, Eun-Sang
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.276-283
    • /
    • 2019
  • Nitinol is an alloy of nickel and titanium. Nitinol is one of the shape memory alloys(SMA) that are restored to a remembered form, changing the crystal structure at a given temperature. Because of these unique features, it is used in medical devices, high precision sensors, and aerospace industries. However, the conventional method of mechanical machining for nitinol has problems of thermal and residual stress after processing. Therefore, the electrochemical machining(ECM), which does not produce residual stress and thermal deformation, has emerged as an alternative processing technique. In addition, to replace the existing experimental planning methods, this study used deep neural network(DNN), which is the basis for AI. This method was shown to be more useful than conventional method of design of experiments(RSM, Taguchi, Regression) by applying deep neural network(DNN) to electrochemical machining(ECM) and comparing root mean square errors(RMSE). Comparison with actual experimental values has shown that DNN is a more useful method than conventional method. (DOE - RSM, Taguchi, Regression). The result of the machining was accurately and efficiently predicted by applying electrochemical machining(ECM) and deep neural network(DNN) to the shape memory alloy(SMA), which is a hard-mechinability material.

심층 신경망 기반 딥 드로잉 공정 블랭크 두께 변화율 예측 (Prediction of Blank Thickness Variation in a Deep Drawing Process Using Deep Neural Network)

  • 박근태;박지우;곽민준;강범수
    • 소성가공
    • /
    • v.29 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • The finite element method has been widely applied in the sheet metal forming process. However, the finite element method is computationally expensive and time consuming. In order to tackle this problem, surrogate modeling methods have been proposed. An artificial neural network (ANN) is one such surrogate model and has been well studied over the past decades. However, when it comes to ANN with two or more layers, so called deep neural networks (DNN), there is distinct a lack of research. We chose to use DNNs our surrogate model to predict the behavior of sheet metal in the deep drawing process. Thickness variation is selected as an output of the DNN in order to evaluate workpiece feasibility. Input variables of the DNN are radius of die, die corner and blank holder force. Finite element analysis was conducted to obtain data for surrogate model construction and testing. Sampling points were determined by full factorial, latin hyper cube and monte carlo methods. We investigated the performance of the DNN according to its structure, number of nodes and number of layers, then it was compared with a radial basis function surrogate model using various sampling methods and numbers. The results show that our DNN could be used as an efficient surrogate model for the deep drawing process.

심층신경망을 이용한 조음 예측 모형 개발 (Development of articulatory estimation model using deep neural network)

  • 유희조;양형원;강재구;조영선;황성하;홍연정;조예진;김서현;남호성
    • 말소리와 음성과학
    • /
    • v.8 no.3
    • /
    • pp.31-38
    • /
    • 2016
  • Speech inversion (acoustic-to-articulatory mapping) is not a trivial problem, despite the importance, due to the highly non-linear and non-unique nature. This study aimed to investigate the performance of Deep Neural Network (DNN) compared to that of traditional Artificial Neural Network (ANN) to address the problem. The Wisconsin X-ray Microbeam Database was employed and the acoustic signal and articulatory pellet information were the input and output in the models. Results showed that the performance of ANN deteriorated as the number of hidden layers increased. In contrast, DNN showed lower and more stable RMS even up to 10 deep hidden layers, suggesting that DNN is capable of learning acoustic-articulatory inversion mapping more efficiently than ANN.

Deep neural network 기반 오디오 표식을 위한 데이터 증강 방법 연구 (Study on data augmentation methods for deep neural network-based audio tagging)

  • 김범준;문현기;박성욱;박영철
    • 한국음향학회지
    • /
    • v.37 no.6
    • /
    • pp.475-482
    • /
    • 2018
  • 본 논문에서는 DNN(Deep Neural Network) 기반 오디오 표식을 위한 데이터 증강 방법을 연구한다. 본 시스템에서는 오디오 신호를 멜-스펙트로그램으로 변환하여 오디오 표식을 위한 심층신경망의 입력으로 사용한다. 적은 수의 훈련 데이터를 사용하는 경우 발생하는 문제를 해결하기 위해, 타임 스트레칭, 피치 변화, 동적 영역 압축, 블록 혼합 등의 방법을 사용하여 훈련 데이터를 증강시켰다. 사용된 데이터 증강 기법의 최적 파라미터와 최적 조합을 오디오 표식 시뮬레이션을 통해 확인하였다.

Deep Neural Network 기반 프로야구 일일 관중 수 예측 : 광주-기아 챔피언스 필드를 중심으로 (Deep Neural Network Based Prediction of Daily Spectators for Korean Baseball League : Focused on Gwangju-KIA Champions Field)

  • 박동주;김병우;정영선;안창욱
    • 스마트미디어저널
    • /
    • v.7 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • 본 연구는 Deep Neural Network(DNN)을 이용하여 광주-기아 챔피언스 필드의 일일 관중 수를 예측함으로써 이를 통해 구단과 관련기업의 마케팅 자료제공 및 구장 내 부대시설의 재고관리에 자료로 쓰임을 목적으로 수행 되었다. 본 연구에서는 Artificial Neural Network(ANN)의 종류인 DNN 모델을 이용하였으며 DNN 모델의 과적합을 막기 위해 Dropout과 Batch normalization 적용한 모델을 바탕으로 총 4종류를 설계하였다. 각각 10개의 DNN을 만들어 예측값의 Root Mean Square Error(RMSE)와 Mean Absolute Percentage Error(MAPE)의 평균값을 낸 모델과 예측값의 평균으로 RMSE와 MAPE를 평가한 Ensemble 모델을 만들었다. 모델의 학습 데이터는 2008년부터 2017년까지의 관중 수 데이터를 수집하여 수집된 데이터의 80%를 무작위로 선정하였으며, 나머지 20%는 테스트 데이터로 사용하였다. 총 100회의 데이터 선정, 모델구성 그리고 학습 및 예측을 한 결과 Ensemble 모델은 DNN 모델의 예측력이 가장 우수하게 나왔으며, 다중선형회귀 모델 대비 RMSE는 15.17%, MAPE는 14.34% 높은 예측력을 보이고 있다.

잡음 환경에 효과적인 음성 인식을 위한 Gaussian mixture model deep neural network 하이브리드 기반의 특징 보상 (A study on Gaussian mixture model deep neural network hybrid-based feature compensation for robust speech recognition in noisy environments)

  • 윤기무;김우일
    • 한국음향학회지
    • /
    • v.37 no.6
    • /
    • pp.506-511
    • /
    • 2018
  • 본 논문에서는 잡음 환경에서 효과적인 음성인식을 위하여 GMM(Gaussian Mixture Model)-DNN(Deep Neural Network) 하이브리드 기반의 특징 보상 기법을 제안한다. 기존의 GMM 기반의 특징 보상에서 필요로 하는 사후 확률을 DNN을 통해 계산한다. Aurora 2.0 데이터를 이용한 음성 인식 성능 평가에서 본 논문에서 제안한 GMM-DNN 하이브리드 기법이 기존의 GMM 기반 기법에 비해 Known, Unknown 잡음 환경에서 모두 평균적으로 우수한 성능을 나타낸다. 특히 Unknown 잡음 환경에서 평균 오류율이 9.13 %의 상대 향상률을 나타내고, 낮은 SNR(Signal to Noise Ratio) 잡음 환경에서 상당히 우수한 성능을 보인다.

River streamflow prediction using a deep neural network: a case study on the Red River, Vietnam

  • Le, Xuan-Hien;Ho, Hung Viet;Lee, Giha
    • 농업과학연구
    • /
    • v.46 no.4
    • /
    • pp.843-856
    • /
    • 2019
  • Real-time flood prediction has an important role in significantly reducing potential damage caused by floods for urban residential areas located downstream of river basins. This paper presents an effective approach for flood forecasting based on the construction of a deep neural network (DNN) model. In addition, this research depends closely on the open-source software library, TensorFlow, which was developed by Google for machine and deep learning applications and research. The proposed model was applied to forecast the flowrate one, two, and three days in advance at the Son Tay hydrological station on the Red River, Vietnam. The input data of the model was a series of discharge data observed at five gauge stations on the Red River system, without requiring rainfall data, water levels and topographic characteristics. The research results indicate that the DNN model achieved a high performance for flood forecasting even though only a modest amount of data is required. When forecasting one and two days in advance, the Nash-Sutcliffe Efficiency (NSE) reached 0.993 and 0.938, respectively. The findings of this study suggest that the DNN model can be used to construct a real-time flood warning system on the Red River and for other river basins in Vietnam.