• 제목, 요약, 키워드: Deep Neural Network(DNN)

검색결과 111건 처리시간 0.032초

연속적 데이터 처리 심층신경망을 이용한 12 lead 심전도 파라미터의 자동 획득 (Automatic Parameter Acquisition of 12 leads ECG Using Continuous Data Processing Deep Neural Network)

  • 김지운;박성민;최성욱
    • 대한의용생체공학회:의공학회지
    • /
    • v.41 no.2
    • /
    • pp.107-119
    • /
    • 2020
  • The deep neural networks (DNN) that can replicate the behavior of the human expert who recognizes the characteristics of ECG waveform have been developed and studied to analyze ECG. However, although the existing DNNs can not provide the explanations for their decisions, those trials have attempted to determine whether patients have certain diseases or not and those decisions could not be accepted because of the absence of relating theoretical basis. In addition, these DNNs required a lot of training data to obtain sufficient accuracy in spite of the difficulty in the acquisition of relating clinical data. In this study, a small-sized continuous data processing DNN (C-DNN) was suggested to determine the simple characteristics of ECG wave that were not required additional explanations about its decisions and the C-DNN can be easily trained with small training data. Although it can analyze small input data that was selected in narrow region on whole ECG, it can continuously scan all ECG data and find important points such as start and end points of P, QRS and T waves within a short time. The star and end points of ECG waves determined by the C-DNNs were compared with the results performed by human experts to estimate the accuracies of the C-DNNs. The C-DNN has 150 inputs, 51 outputs, two hidden layers and one output layer. To find the start and end points, two C-DNNs were trained through deep learning technology and applied to a parameter acquisition algorithms. 12 lead ECG data measured in four patients and obtained through PhysioNet was processed to make training data by human experts. The accuracy of the C-DNNs were evaluated with extra data that were not used at deep learning by comparing the results between C-DNNs and human experts. The averages of the time differences between the C-DNNs and experts were 0.1 msec and 13.5 msec respectively and those standard deviations were 17.6 msec and 15.7 msec. The final step combining the results of C-DNN through the waveforms of 12 leads was successfully determined all 33 waves without error that the time differences of human experts decision were over 20 msec. The reliable decision of the ECG wave's start and end points benefits the acquisition of accurate ECG parameters such as the wave lengths, amplitudes and intervals of P, QRS and T waves.

다중 모달 생체신호를 이용한 딥러닝 기반 감정 분류 (Deep Learning based Emotion Classification using Multi Modal Bio-signals)

  • 이지은;유선국
    • 한국멀티미디어학회논문지
    • /
    • v.23 no.2
    • /
    • pp.146-154
    • /
    • 2020
  • Negative emotion causes stress and lack of attention concentration. The classification of negative emotion is important to recognize risk factors. To classify emotion status, various methods such as questionnaires and interview are used and it could be changed by personal thinking. To solve the problem, we acquire multi modal bio-signals such as electrocardiogram (ECG), skin temperature (ST), galvanic skin response (GSR) and extract features. The neural network (NN), the deep neural network (DNN), and the deep belief network (DBN) is designed using the multi modal bio-signals to analyze emotion status. As a result, the DBN based on features extracted from ECG, ST and GSR shows the highest accuracy (93.8%). It is 5.7% higher than compared to the NN and 1.4% higher than compared to the DNN. It shows 12.2% higher accuracy than using only single bio-signal (GSR). The multi modal bio-signal acquisition and the deep learning classifier play an important role to classify emotion.

Automated optimization for memory-efficient high-performance deep neural network accelerators

  • Kim, HyunMi;Lyuh, Chun-Gi;Kwon, Youngsu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.505-517
    • /
    • 2020
  • The increasing size and complexity of deep neural networks (DNNs) necessitate the development of efficient high-performance accelerators. An efficient memory structure and operating scheme provide an intuitive solution for high-performance accelerators along with dataflow control. Furthermore, the processing of various neural networks (NNs) requires a flexible memory architecture, programmable control scheme, and automated optimizations. We first propose an efficient architecture with flexibility while operating at a high frequency despite the large memory and PE-array sizes. We then improve the efficiency and usability of our architecture by automating the optimization algorithm. The experimental results show that the architecture increases the data reuse; a diagonal write path improves the performance by 1.44× on average across a wide range of NNs. The automated optimizations significantly enhance the performance from 3.8× to 14.79× and further provide usability. Therefore, automating the optimization as well as designing an efficient architecture is critical to realizing high-performance DNN accelerators.

관상동맥질환 위험인자 유무 판단을 위한 심박변이도 매개변수 기반 심층 신경망의 성능 평가 (Performance Evaluation of Deep Neural Network (DNN) Based on HRV Parameters for Judgment of Risk Factors for Coronary Artery Disease)

  • 박성준;최승연;김영모
    • 대한의용생체공학회:의공학회지
    • /
    • v.40 no.2
    • /
    • pp.62-67
    • /
    • 2019
  • The purpose of this study was to evaluate the performance of deep neural network model in order to determine whether there is a risk factor for coronary artery disease based on the cardiac variation parameter. The study used unidentifiable 297 data to evaluate the performance of the model. Input data consists of heart rate parameters, which are SDNN (standard deviation of the N-N intervals), PSI (physical stress index), TP (total power), VLF (very low frequency), LF (low frequency), HF (high frequency), RMSSD (root mean square of successive difference) APEN (approximate entropy) and SRD (successive R-R interval difference), the age group and sex. Output data are divided into normal and patient groups, and the patient group consists of those diagnosed with diabetes, high blood pressure, and hyperlipidemia among the various risk factors that can cause coronary artery disease. Based on this, a binary classification model was applied using Deep Neural Network of deep learning techniques to classify normal and patient groups efficiently. To evaluate the effectiveness of the model used in this study, Kernel SVM (support vector machine), one of the classification models in machine learning, was compared and evaluated using same data. The results showed that the accuracy of the proposed deep neural network was train set 91.79% and test set 85.56% and the specificity was 87.04% and the sensitivity was 83.33% from the point of diagnosis. These results suggest that deep learning is more efficient when classifying these medical data because the train set accuracy in the deep neural network was 7.73% higher than the comparative model Kernel SVM.

I-벡터 기반 오픈세트 언어 인식을 위한 다중 판별 DNN (Multiple Discriminative DNNs for I-Vector Based Open-Set Language Recognition)

  • 강우현;조원익;강태균;김남수
    • 한국통신학회논문지
    • /
    • v.41 no.8
    • /
    • pp.958-964
    • /
    • 2016
  • 본 논문에서는 여러 개의 이원 support vector machine (binary SVM)을 사용하여 세 개 이상의 클래스를 분류하는 multi-class SVM과 유사하게 다중의 판별 deep neural network (DNN) 모델을 사용하는 i-벡터 기반의 언어 인식 시스템을 제안한다. 제안하는 시스템은 NIST 2015 i-vector Machine Learning Challenge 데이터베이스에 포함된 i-벡터들을 이용하여 학습 및 테스트 되었으며, 오픈 세트에서 기존의 cosine distance, multi-class SVM 및 단일 neural network (NN) 기반의 언어 인식 시스템에 비하여 높은 성능을 보임이 확인되었다.

심층신경망을 이용한 짧은 발화 음성인식에서 극점 필터링 기반의 특징 정규화 적용 (Applying feature normalization based on pole filtering to short-utterance speech recognition using deep neural network)

  • 한재민;김민식;김형순
    • 한국음향학회지
    • /
    • v.39 no.1
    • /
    • pp.64-68
    • /
    • 2020
  • 가우스 혼합 모델-은닉 마코프 모델(Gaussian Mixture Model-Hidden Markov Model, GMM-HMM)을 이용하는 전통적인 음성인식 시스템에서는, 극점 필터링 기반의 켑스트럼 특징 정규화 방식이 잡음 환경에서 짧은 발화의 인식 성능을 향상시키는데 효과적이었다. 본 논문에서는 심층신경망(Deep Neural Network, DNN)을 이용하는 최신의 음성인식 시스템에서도 이 방식의 유용성이 있는지 검토한다. AURORA 2 DB에 대한 실험 결과, 특히 훈련 및 테스트 환경 사이의 불일치가 클 때에, 극점 필터링 기반의 켑스트럼 평균 분산 정규화 방식이 극점 필터링을 사용하지 않는 방식에 비해 매우 짧은 발화의 인식 성능을 개선시킴을 보여 준다.

RNN과 LSTM을 이용한 주가 예측율 향상을 위한 딥러닝 모델 (Deep Learning Model for Prediction Rate Improvement of Stock Price Using RNN and LSTM)

  • 신동하;최광호;김창복
    • 한국정보기술학회논문지
    • /
    • v.15 no.10
    • /
    • pp.9-16
    • /
    • 2017
  • 최근 딥러닝을 이용한 주가예측은 기본적으로 보조지표를 예측요소로 사용하고 있으나, 보조지표는 분석가의 주관적인 관점이기 때문에, 예측요소에 대한 적합여부에 대한 검토가 필요하다. 본 연구는 R의 신경망 패키지를 통해, 기존의 보조지표에 대해서 다양한 조합으로 예측요소 적합여부를 검토하고, 예측율 향상을 위해 최적의 보조지표 조합과 환율, 환율 이동평균, 전산업생산지수 등 환경 예측요소들에 대해서 연구하였다. 또한, 추출된 예측요소를 입출력 패턴으로 DNN, RNN, LSTM 등의 딥러닝 모델을 제안하였다. 연구결과 대부분의 보조지표는 예측율을 저하하는 현상이 있었으며, 추가 환경 예측요소를 통해, 예측율이 향상되었다. 또한, DNN에 비해 시계열 딥러닝 네트워크인 RNN과 LSTM이 빠르고 안정적으로 학습하였으며, 종목별로 차이는 있으나 대략 15% 정도의 예측율 향상을 보였다.

실제 컨버터 출력 데이터를 이용한 특정 지역 태양광 장단기 발전 예측 (Prediction of Short and Long-term PV Power Generation in Specific Regions using Actual Converter Output Data)

  • 하은규;김태오;김창복
    • 한국항행학회논문지
    • /
    • v.23 no.6
    • /
    • pp.561-569
    • /
    • 2019
  • 태양광 발전은 일사량만 있으면 전기에너지를 얻을 수 있기 때문에, 새로운 에너지 공급원으로 용도가 급증하고 있다. 본 논문은 실제 태양광 발전 시스템의 컨버터 출력을 이용하여 장단기 출력 예측을 하였다. 예측 알고리즘은 다중선형회귀와 머신러닝의 지도학습 중 분류모델인 서포트 벡터 머신 그리고 DNN과 LSTM 등 딥러닝을 이용하였다. 또한 기상요소의 입출력 구조에 따라 3개의 모델을 이용하였다. 장기 예측은 월별, 계절별, 연도별 예측을 하였으며, 단기 예측은 7일간의 예측을 하였다. 결과로서 RMSE 측도에 의한 예측 오차로 비교해 본 결과 다중선형회귀와 SVM 보다는 딥러닝 네트워크가 예측 정확도 측면에서 더 우수하였다. 또한, DNN 보다 시계열 예측에 우수한 모델인 LSTM이 예측 정확도 측면에서 우수하였다. 입출력 구조에 따른 실험 결과는 모델 1보다 모델 2가 오차가 적었으며, 모델 2보다는 모델 3이 오차가 적었다.

DNN과 2차 데이터를 이용한 PM10 예보 성능 개선 (Improvement of PM10 Forecasting Performance using DNN and Secondary Data)

  • 유숙현;전영태
    • 한국멀티미디어학회논문지
    • /
    • v.22 no.10
    • /
    • pp.1187-1198
    • /
    • 2019
  • In this study, we propose a new $PM_{10}$ forecasting model for Seoul region using DNN(Deep Neural Network) and secondary data. The previous numerical and Julian forecast model have been developed using primary data such as weather and air quality measurements. These models give excellent results for accuracy and false alarms, but POD is not good for the daily life usage. To solve this problem, we develop four secondary factors composed with primary data, which reflect the correlations between primary factors and high $PM_{10}$ concentrations. The proposed 4 models are A(Anomaly), BT(Back trajectory), CB(Contribution), CS(Cosine similarity), and ALL(model using all 4 secondary data). Among them, model ALL shows the best performance in all indicators, especially the PODs are improved.

DNN과 슈퍼픽셀을 이용한 실내 공간 인식 (Indoor Space Recognition using Super-pixel and DNN)

  • 김기상;최형일
    • 인터넷정보학회논문지
    • /
    • v.19 no.3
    • /
    • pp.43-48
    • /
    • 2018
  • 본 논문은 DNN(Deep Neural Network)와 슈퍼픽셀을 이용한 실내 공간 인식 알고리즘을 제안한다. 영상으로부터 실내 공간 인식을 위해 우선 영상 분할을 위한 세그멘테이션 프로세스가 필요하다. 이를 위해 본 논문에서는 적당한 크기로 나눌 수 있는 슈퍼 픽셀 알고리즘을 이용해 세그멘테이션을 수행한다. 각 세그먼트를 인식하기 위해 세그먼트마다 제안하는 방법을 이용하여 특징을 추출한다. 추출된 특징들을 DNN을 이용하여 학습하고, 학습으로부터 추출된 DNN모델을 이용하여 각 세그먼트를 인식한다. 실험 결과를 통해 제안하는 방법과 기존의 알고리즘과의 성능 비교 분석을 한다.