• 제목, 요약, 키워드: Deep Neural Network(DNN)

검색결과 111건 처리시간 0.034초

Artificial neural network algorithm comparison for exchange rate prediction

  • Shin, Noo Ri;Yun, Dai Yeol;Hwang, Chi-gon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.125-130
    • /
    • 2020
  • At the end of 1997, the volatility of the exchange rate intensified as the nation's exchange rate system was converted into a free-floating exchange rate system. As a result, managing the exchange rate is becoming a very important task, and the need for forecasting the exchange rate is growing. The exchange rate prediction model using the existing exchange rate prediction method, statistical technique, cannot find a nonlinear pattern of the time series variable, and it is difficult to analyze the time series with the variability cluster phenomenon. And as the number of variables to be analyzed increases, the number of parameters to be estimated increases, and it is not easy to interpret the meaning of the estimated coefficients. Accordingly, the exchange rate prediction model using artificial neural network, rather than statistical technique, is presented. Using DNN, which is the basis of deep learning among artificial neural networks, and LSTM, a recurrent neural network model, the number of hidden layers, neurons, and activation function changes of each model found the optimal exchange rate prediction model. The study found that although there were model differences, LSTM models performed better than DNN models and performed best when the activation function was Tanh.

Multi-band Approach to Deep Learning-Based Artificial Stereo Extension

  • Jeon, Kwang Myung;Park, Su Yeon;Chun, Chan Jun;Park, Nam In;Kim, Hong Kook
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.398-405
    • /
    • 2017
  • In this paper, an artificial stereo extension method that creates stereophonic sound from a mono sound source is proposed. The proposed method first trains deep neural networks (DNNs) that model the nonlinear relationship between the dominant and residual signals of the stereo channel. In the training stage, the band-wise log spectral magnitude and unwrapped phase of both the dominant and residual signals are utilized to model the nonlinearities of each sub-band through deep architecture. From that point, stereo extension is conducted by estimating the residual signal that corresponds to the input mono channel signal with the trained DNN model in a sub-band domain. The performance of the proposed method was evaluated using a log spectral distortion (LSD) measure and multiple stimuli with a hidden reference and anchor (MUSHRA) test. The results showed that the proposed method provided a lower LSD and higher MUSHRA score than conventional methods that use hidden Markov models and DNN with full-band processing.

심전도 신호의 전력선 잡음 제거를 위한 Deep De-noising Network 설계 (Design of Deep De-nosing Network for Power Line Artifact in Electrocardiogram)

  • 권오윤;이지은;권준환;임성준;유선국
    • 한국멀티미디어학회논문지
    • /
    • v.23 no.3
    • /
    • pp.402-411
    • /
    • 2020
  • Power line noise in electrocardiogram signals makes it difficult to diagnose cardiovascular disease. ECG signals without power line noise are needed to increase the accuracy of diagnosis. In this paper, it is proposed DNN(Deep Neural Network) model to remove the power line noise in ECG. The proposed model is learned with noisy ECG, and clean ECG. Performance of the proposed model were performed in various environments(varying amplitude, frequency change, real-time amplitude change). The evaluation used signal-to-noise ratio and root mean square error (RMSE). The difference in evaluation metrics between the noisy ECG signals and the de-noising ECG signals can demonstrate effectiveness as the de-noising model. The proposed DNN model learning result was a decrease in RMSE 0.0224dB and a increase in signal-to-noise ratio 1.048dB. The results performed in various environments showed a decrease in RMSE 1.7672dB and a increase in signal-to-noise ratio 15.1879dB in amplitude changes, a decrease in RMSE 0.0823dB and a increase in signal-to-noise ratio 4.9287dB in frequency changes. Finally, in real-time amplitude changes, RMSE was decreased 0.3886dB and signal-to-noise ratio was increased 11.4536dB. Thus, it was shown that the proposed DNN model can de-noise power line noise in ECG.

특수일 분리와 예측요소 확장을 이용한 전력수요 예측 딥 러닝 모델 (Deep Learning Model for Electric Power Demand Prediction Using Special Day Separation and Prediction Elements Extention)

  • 박준호;신동하;김창복
    • 한국항행학회논문지
    • /
    • v.21 no.4
    • /
    • pp.365-370
    • /
    • 2017
  • 본 연구는 전력수요 패턴이 다른 평일과 특수일 데이터가 가지는 상관관계를 분석하여, 별도의 데이터 셋을 구축하고, 각 데이터 셋에 적합한 딥 러닝 네트워크를 이용하여, 전력수요예측 오차를 감소하는 방안을 제시하였다. 또한, 기본적인 전력수요 예측요소인 기상요소에 환경요소, 구분요소 등 다양한 예측요소를 추가하여 예측율을 향상하는 방안을 제시하였다. 전체데이터는 시계열 데이터 학습에 적합한 LSTM을 이용하여 전력수요예측을 하였으며, 특수일 데이터는 DNN을 이용하여 전력수요예측을 하였다. 실험결과 기상요소 이외의 예측요소 추가를 통해 예측율이 향상되었다. 전체 데이터 셋의 평균 RMSE는 LSTM이 0.2597이며, DNN이 0.5474로 LSTM이 우수한 예측율을 보였다. 특수일 데이터 셋의 평균 RMSE는 0.2201로 DNN이 LSTM보다 우수한 예측율을 보였다. 또한, 전체 데이터 셋의 LSTM의 MAPE는 2.74 %이며, 특수 일의 MAPE는 3.07 %를 나타냈다.

DNN 기반 컬러와 열 영상을 이용한 다중 스펙트럼 보행자 검출 기법 (DNN Based Multi-spectrum Pedestrian Detection Method Using Color and Thermal Image)

  • 이용우;신지태
    • 방송공학회논문지
    • /
    • v.23 no.3
    • /
    • pp.361-368
    • /
    • 2018
  • 자율주행 자동차의 연구가 빠르게 발전하는 가운데 보행자 검출에 대한 연구 또한 성공적으로 진행되고 있다. 그러나 대부분의 연구에서 사용되는 데이터셋이 컬러영상을 기반하고 있고 또한 보행자의 인식이 상대적으로 쉬운 영상이 많다. 컬러 영상의 경우 보행자가 빛에 노출되는 정도에 따라 영상에 제대로 포착이 되지 않을 수 있고 이로 인해 기존 방식들로는 이러한 보행자를 제대로 검출하지 못하는 상황이 발생한다. 따라서 본 논문에서는 DNN (deep neural network) 기반 컬러 영상과 열 영상을 이용한 다중 스펙트럼 보행자 검출 기법을 제안하고자 한다. 기존의 SSD (single shot multibox detector) 기법을 기반으로 하여 컬러 영상과 열 영상을 동시에 활용하는 퓨전 네트워크 구조를 제안한다. 실험은 KAIST의 데이터셋을 이용하여 실시하였고 제안한 기법인 SSD-H (SSD-Halfway fusion)의 방식이 KAIST 보행자 검출기준의 기준치보다 18.18% 낮은 miss rate를 획득하였고 또한 기존 halfway fusion 기법에 비해 최소 2.1% 낮은 miss rate를 획득하였다.

적대적 생성신경망을 이용한 손상된 이미지의 복원 (Image Restoration using GAN)

  • 문찬규;어영정;변혜란
    • 방송공학회논문지
    • /
    • v.23 no.4
    • /
    • pp.503-510
    • /
    • 2018
  • 손상된 영상의 복원은 디지털 영상 처리기술이 등장하기 이전부터 시도되었던 근원적 문제이다. 컴퓨터의 연산 능력과 다양한 기술의 발전에 따라 손상된 영상을 복원하는 다양한 연구가 소개되었으나 그 결과는 사람에 의한 수동적 결과물과 비교하여 낮은 복원 결과를 보여 왔다. 최근 심층 신경망 (DNN, Deep Neural Network)의 발전으로 이미지 복원에 이를 적용한 다양한 연구가 소개 되고 있지만, 광범위한 영역이 손상된 경우 근접한 화소를 활용하는 방법으로 해결이 어렵다. 이와 같은 경우는 주변의 영상의 문맥적 정보를 통해 손상된 영역을 추론을 통한 복원이 필요하다. 본 논문에서는 심층 신경망 기술 중 하나인 적대적 생성신경망(GAN, Generative Adversarial Network)을 이용한 이미지 복원 네트워크를 제안한다. 제안하는 시스템은 이미지 생성 네트워크, 생성 결과 판별 네트워크로 구성 된다. 본 논문에서는 제안하는 방안을 통해 다양한 종류의 이미지를 복원함에 있어서 훼손된 영역의 추론을 통하여 자연스러운 영상 복원뿐 아니라 원본 영상의 질감까지 복원이 가능함을 실험을 통해 확인 하였다.

심층신경망 알고리즘을 이용한 가상환경에서의 멀미 측정 및 분석 (Motion Sickness Measurement and Analysis in Virtual Reality using Deep Neural Networks Algorithm)

  • 정대교;유상봉;장윤
    • 한국컴퓨터그래픽스학회논문지
    • /
    • v.25 no.1
    • /
    • pp.23-32
    • /
    • 2019
  • 사이버 멀미는 VR 체험 중 발생하는 증상으로, 주로 감각과 인지 시스템 사이의 불일치로 인해 발생하는 것으로 추정된다. 하지만 감각 및 인지 시스템을 객관적으로 측정할 수 있는 방법이 없기 때문에, 사이버 멀미를 측정하는 것은 어렵다. 이를 해결하기 위해 사이버 멀미를 측정하기 위해 다양한 방법론들이 연구되고 있다. 기존의 멀미를 측정하기 위한 방법은 설문방식을 이용하거나, 머신 러닝을 이용하여 뇌파 데이터를 분석하는 방식으로 진행되어 왔다. 하지만 설문을 이용한 방식은 다소 객관성이 떨어지며, 머신 러닝을 사용하는 방식은 아직까지 높은 정확도를 얻은 연구가 부족하다. 본 논문에서는 뇌파 데이터를 Deep Neural Network (DNN) 딥러닝 알고리즘에 적용하여 객관적인 사이버 멀미 측정 방식을 제안한다. 또한 우리는 더 정확한 사이버 멀미 측정 결과를 위하여 딥러닝 네트워크 구조와 뇌파 데이터 전처리 기법을 제안한다. 우리의 접근 방법은 최대 98.88%의 정확도로 사이버 멀미를 측정한다. 또한 우리는 실험에서 사이버 멀미를 유발하는 영상의 특성을 분석한다. 일반적으로 사이버 멀미는 상하 움직임이 심한 화면, 화면의 지속적이고 빠른 전환, 공중에 떠있는 상황에서 발생한다.

External knowledge를 사용한 LFMMI 기반 음향 모델링 (LFMMI-based acoustic modeling by using external knowledge)

  • 박호성;강요셉;임민규;이동현;오준석;김지환
    • 한국음향학회지
    • /
    • v.38 no.5
    • /
    • pp.607-613
    • /
    • 2019
  • 본 논문은 external knowledge를 사용한 lattice 없는 상호 정보 최대화(Lattice Free Maximum Mutual Information, LF-MMI) 기반 음향 모델링 방법을 제안한다. External knowledge란 음향 모델에서 사용하는 학습 데이터 이외의 문자열 데이터를 말한다. LF-MMI란 심층 신경망(Deep Neural Network, DNN) 학습의 최적화를 위한 목적 함수의 일종으로, 구별 학습에서 높은 성능을 보인다. LF-MMI에는 DNN의 사후 확률을 계산하기 위해 음소의 열을 사전 확률로 갖는다. 본 논문에서는 LF-MMI의 목적식의 사전 확률을 담당하는 음소 모델링에 external knowlege를 사용함으로써 과적합의 가능성을 낮추고, 음향 모델의 성능을 높이는 방법을 제안한다. External memory를 사용하여 사전 확률을 생성한 LF-MMI 모델을 사용했을 때 기존 LF-MMI와 비교하여 14 %의 상대적 성능 개선을 보였다.

효과적인 음성 인식 평가를 위한 심층 신경망 기반의 음성 인식 성능 지표 (Speech Recognition Accuracy Measure using Deep Neural Network for Effective Evaluation of Speech Recognition Performance)

  • 지승은;김우일
    • 한국정보통신학회논문지
    • /
    • v.21 no.12
    • /
    • pp.2291-2297
    • /
    • 2017
  • 본 논문에서는 음성 데이터베이스를 평가하기 위해 여러 가지의 음성 특성 지표 추출 알고리즘을 설명하고 심층 신경망 기반의 새로운 음성 성능 지표 생성 방법을 제안한다. 선행 연구에서는 효과적인 음성 인식 성능 지표를 생성하기 위해 대표적인 음성 인식 성능 지표인 단어 오인식률(Word Error Rate, WER)과 상관도가 높은 여러 가지 음성 특성 지표들을 조합하여 새로운 성능 지표를 생성하였다. 생성된 음성 성능 지표는 다양한 잡음 환경에서 각 음성 특성 지표를 단독으로 사용할 때보다 단어 오인식률과 높은 상관도를 나타내어 음성 인식 성능을 예측하는데 효과적임을 입증 하였다. 본 논문에서는 심층 신경망을 기반으로 한 음성 특성 지표 추출 방법에 대해 설명하며 선행 연구에서 조합에 사용한 GMM(Gaussian Mixture Model) 음향 모델 확률 값을 심층 신경망 학습을 통해 추출한 확률 값으로 대체해 조합함으로써 단어 오인식률과 보다 높은 상관도를 갖는 것을 확인한다.

DBN을 이용한 다중 방위 데이터 기반 능동소나 표적 식별 (Multiaspect-based Active Sonar Target Classification Using Deep Belief Network)

  • 김동욱;배건성;석종원
    • 한국정보통신학회논문지
    • /
    • v.22 no.3
    • /
    • pp.418-424
    • /
    • 2018
  • 수중 표적 탐지 및 식별은 군사 및 비군사적으로 중요한 문제이다. 최근 패턴인식 분야에서 딥러닝 기술이 발전되면서 많은 성능개선 결과가 발표되고 있다. 그중 DBN(Deep Belief Network)기법은 DNN(Deep Neural Network)을 사전 훈련하는데 사용되어 좋은 성능을 보여주고 있다. 본 논문에서는 능동 소나를 이용한 수중 표적의 식별 문제에 DBN을 사용하여 실험을 진행하고, 그 결과를 비교하였다. 표적신호는 3차원 하이라이트 모델을 사용하여 합성된 능동 소나 신호를 사용하였고, 특징추출 방법으로는 FrFT(Fractional Fourier Transform) 기반의 특징추출을 사용하였다. 단일 센서, 즉, 단일 방위 데이터 기반의 실험에서 DBN을 이용한 식별 결과는 기존의 BPNN(Back Propagation Neural Network)에 비해 약 3.83 % 향상되었다. 또한, 다중 방위 기반의 식별 실험에서는 관측열의 개수가 3을 초과하면 95% 이상의 성능을 얻을 수 있었다.