• Title, Summary, Keyword: Definition of acid rain

Search Result 4, Processing Time 0.031 seconds

A Comparative Analysis of Descriptions about the Acid Rain in the 10 year Science Textbooks according to the 7th Science Curriculum (7차 교육과정에 따른 10학년 과학교과서에 제시된 산성비 관련 내용 진술의 비교 분석)

  • Kong, Young-Tae;Kim, Sung-Kyu
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.811-821
    • /
    • 2013
  • A purpose of this study was to provide the helpful information about operation of revised science curriculum by analyzing many contents about acid rain with various aspects, which was written in science textbook of 10 year according to the 7th national curriculum. The results show that there was the lack of educational systemicity among elementary school, middle school, and high school science curriculum and the lack of explanation for occurrence and standard level of acid rain, pH 5.6. And It could be categorized the effect of acid rain into four groups and experiment or experiment activities into three groups.

An Understanding of Elementary School Students on the Acid-Base, Acid Rain and Soil Acidification (초등학생들의 산-염기, 산성비, 토양산성화에 대한 이해)

  • KIM, Sung-Kyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1764-1782
    • /
    • 2015
  • The purpose of this study is to investigate the understanding on the acid-base, acid rain and soil acidification of the elementary students. The participants in the current study were 280 6th graders from a elementary school in Gyeongnam Province. A questionnaire consists of four categories: understanding of (a) acid-base basic knowledge, (b) acid rain and (c) soil acidification. (d) In addition, students were asked to comment about the introduction of the acid rain experiment in the science textbook. The results are as follows; First, the results regarding acid-base basic knowledge. They know the classification, characteristics, and properties of acid-based solutions well but they don't know the acid-base neutralization, examples using properties and application in real life. Second, the results regarding acid rain, students know the definition and damage of acid rain but they don't know the causing substances, emission source and way of solution of acid rain for lack of knowledge. Third, the results regarding soil acidification was the well-known part for the students because they had continued learning about the soil from the lesson of acid rain. Also, we looked into the difference in gender and region about the understanding of acid-base, acid rain and soil acidification. According to the gender of the data about the understanding of acid-base, acid rain and soil acidification, the percentage of correct answers of female was higher than male's. Also we expected that urban students were higher than rural students on the understanding of acid-base, acid rain and soil acidification, but the understanding of urban students were similar to rural students. Fourth, we got positive answers and negative answers to the introduction of acid rain experiment. Most of the positive opinion were I want to know a lot acid rain experiment", followed by "It is possible to prevent the risk of the damage and It seems to having fun and new order. Most of the negative opinion were Acid rain experiment may be difficult and complicated followed by Just a theory in the book is enough, Acid rain experiment were boring and not fun, Acid rain experiment is dangerous, There are many to study in this order.

The Conceptions of High School Students about Acid Rain, Ozone Layer, and Greenhouse Effect (산성비, 오존층, 온실 효과에 대한 고등학생들의 개념)

  • Han, Jae-Young;Jeong, Yeong-Seon;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.3
    • /
    • pp.364-370
    • /
    • 2000
  • In this study, 10th-grade students' conceptions concerning acid rain, ozone layer, and greenhouse effect were investigated. A conception test that asked to explain about the three concepts and the relationships among them was administered to 137 students. Analysis of their responses indicated that students had lack of understanding about the definition of acid rain, the difference between greenhouse effect and global warming, and how to prevent the increase in greenhouse effect. They also confused ozone layer with greenhouse effect. Many students thought that there were causal relationships among the increase of acid rain, the destruction of ozone layer, and the increase in greenhouse effect.

  • PDF


  • Mierlo, J.-Van;Vereecken, L.;Maggetto, G.;Favrel, V.;Meyer, S.;Hecq, W.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 2003
  • How to compare the environmental damage caused by vehicles with different foe]s and drive trains\ulcorner This paper describes a methodology to assess the environmental impact of vehicles, using different approaches, and evaluating their benefits and limitations. Rating systems are analysed as tools to compare the environmental impact of vehicles, allowing decision makers to dedicate their financial and non-financial policies and support measures in function of the ecological damage. The paper is based on the "Clean Vehicles" research project, commissioned by the Brussels Capital Region via the BIM-IBGE (Brussels Institute for the Conservation of the Environment) (Van Mierlo et at., 2001). The VriJe Universiteit Brussel (ETEC) and the universite Libre do Bruxelles (CEESE) have jointly carried out the workprogramme. The most important results of this project are illustrated in this paper. First an overview of environmental, economical and technical characteristics of the different alternative fuels and drive trains is given. Afterward the basic principles to identify the environmental impact of cars are described. An outline of the considered emissions and their environmental impact leads to the definition of the calculation method, named Ecoscore. A rather simple and pragmatic approach would be stating that all alternative fuelled vehicles (LPG, CNG, EV, HEV, etc.) can be considered as ′clean′. Another basic approach is considering as ′clean′ all vehicles satisfying a stringent omission regulation like EURO IV or EEV. Such approaches however don′t tell anything about the real environmental damage of the vehicles. In the paper we describe "how should the environmental impact of vehicles be defined\ulcorner", including parameters affecting the emissions of vehicles and their influence on human beings and on the environment and "how could it be defined \ulcorner", taking into account the availability of accurate and reliable data. We take into account different damages (acid rain, photochemical air pollution, global warming. noise, etc.) and their impacts on several receptors like human beings (e.g., cancer, respiratory diseases, etc), ecosystems, or buildings. The presented methodology is based on a kind of Life Cycle Assessment (LCA) in which the contribution of all emissions to a certain damage are considered (e.g. using Exposure-Response damage function). The emissions will include oil extraction, transportation refinery, electricity production, distribution, (Well-to-Wheel approach), as well as the emission due to the production, use and dismantling of the vehicle (Cradle-to-Grave approach). The different damages will be normalized to be able to make a comparison. Hence a reference value (determined by the reference vehicle chosen) will be defined as a target value (the normalized value will thus measure a kind of Distance to Target). The contribution of the different normalized damages to a single value "Ecoscore" will be based on a panel weighting method. Some examples of the calculation of the Ecoscore for different alternative fuels and drive trains will be calculated as an illustration of the methodology.