• Title, Summary, Keyword: Demand Forecasts

Search Result 98, Processing Time 0.039 seconds

An Empirical Comparison of Initialization Methods for Holt-Winters Model with Railway Passenger Demand Data (철도여객수요예측을 위한 Holt-Winters모형의 초기값 설정방법 비교)

  • 김성호;홍순흠
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.97.1-103
    • /
    • 2001
  • Railway passenger demand forecasts may be used directly, or as inputs to other optimization model which is use the demand forecasts to produce estimates of other activities. The optimization models require demand forecasts at the most detailed level. In this environment exponential smoothing forecasting methods such as Holt-Winters are appropriate because it is simple and inexpensive in terms of computation. There are several initialization methods for Holt-Winters Model. The purpose of this paper is to compare the initialization methods for Holt-Winters model.

  • PDF

Analyzing Information Value of Temperature Forecast for the Electricity Demand Forecasts (전력 수요 예측 관련 의사결정에 있어서 기온예보의 정보 가치 분석)

  • Han, Chang-Hee;Lee, Joong-Woo;Lee, Ki-Kwang
    • Korean Management Science Review
    • /
    • v.26 no.1
    • /
    • pp.77-91
    • /
    • 2009
  • It is the most important sucess factor for the electricity generation industry to minimize operations cost of surplus electricity generation through accurate demand forecasts. Temperature forecast is a significant input variable, because power demand is mainly linked to the air temperature. This study estimates the information value of the temperature forecast by analyzing the relationship between electricity load and daily air temperature in Korea. Firstly, several characteristics was analyzed by using a population-weighted temperature index, which was transformed from the daily data of the maximum, minimum and mean temperature for the year of 2005 to 2007. A neural network-based load forecaster was derived on the basis of the temperature index. The neural network then was used to evaluate the performance of load forecasts for various types of temperature forecasts (i.e., persistence forecast and perfect forecast) as well as the actual forecast provided by KMA(Korea Meteorological Administration). Finally, the result of the sensitivity analysis indicates that a $0.1^{\circ}C$ improvement in forecast accuracy is worth about $11 million per year.

Probabilistic Forecasting of Seasonal Inflow to Reservoir (계절별 저수지 유입량의 확률예측)

  • Kang, Jaewon
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.965-977
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. It is necessary to get probabilistic forecasts to establish risk-based reservoir operation policies. Probabilistic forecasts may be useful for the users who assess and manage risks according to decision-making responding forecasting results. Probabilistic forecasting of seasonal inflow to Andong dam is performed and assessed using selected predictors from sea surface temperature and 500 hPa geopotential height data. Categorical probability forecast by Piechota's method and logistic regression analysis, and probability forecast by conditional probability density function are used to forecast seasonal inflow. Kernel density function is used in categorical probability forecast by Piechota's method and probability forecast by conditional probability density function. The results of categorical probability forecasts are assessed by Brier skill score. The assessment reveals that the categorical probability forecasts are better than the reference forecasts. The results of forecasts using conditional probability density function are assessed by qualitative approach and transformed categorical probability forecasts. The assessment of the forecasts which are transformed to categorical probability forecasts shows that the results of the forecasts by conditional probability density function are much better than those of the forecasts by Piechota's method and logistic regression analysis except for winter season data.

Accuracy Improvement in Demand Forecast of District Heating by Accounting for Heat Sales Information (열판매 정보를 고려한 지역난방 수요 예측의 정확도 향상)

  • Shin, Yong-Gyun;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • In this study, to improve the accuracy of forecast of heat demand in the district heating system, this study applied heat demand performance among the main factors of district heating demand forecast in Pankyo area as the heat sales information of the user facility instead of existing heat source facility heat supply information, and compared the existing method with the accuracy based on the actual value. As a result of comparing the difference of the forecasts values of the existing and changed methods based on the performance values over the one week (2018.01.08 ~ 01.14) during the hot water peak, the relative error decreased from 7% to 3% The relative error between the existing and revised forecasts was 9% and 4%, respectively, for the five-month cumulative heat demand from February to February 2018, Also, in case of the weekend where the demand of heat is differentiated, the relative error of the forecasts value is consistently reduced from 10% to 5%.

  • PDF

Chaotic Predictability for Time Series Forecasts of Maximum Electrical Power using the Lyapunov Exponent

  • Park, Jae-Hyeon;Kim, Young-Il;Choo, Yeon-Gyu
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.369-374
    • /
    • 2011
  • Generally the neural network and the Fuzzy compensative algorithms are applied to forecast the time series for power demand with the characteristics of a nonlinear dynamic system, but, relatively, they have a few prediction errors. They also make long term forecasts difficult because of sensitivity to the initial conditions. In this paper, we evaluate the chaotic characteristic of electrical power demand with qualitative and quantitative analysis methods and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction and a time series forecast for multi dimension using Lyapunov Exponent (L.E.) quantitatively. We compare simulated results with previous methods and verify that the present method is more practical and effective than the previous methods. We also obtain the hourly predictability of time series for power demand using the L.E. and evaluate its accuracy.

An Empirical Comparison among Initialization Methods of Holt-Winters Model for Railway Passenger Demand Forecast (철도여객수요예측을 위한 Holt-Winters모형의 초기값 설정방법 비교)

  • 최태성;김성호
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.9-13
    • /
    • 2004
  • Railway passenger demand forecasts may be used directly, or as inputs to other optimization models use them to produce estimates of other activities. The optimization models require demand forecasts at the most detailed level. In this environment exponential smoothing forecasting methods such as Holt-Winters are appropriate because it is simple and inexpensive in terms of computation. There are several initialization methods for Holt-Winters Model. The purpose of this paper is to compare the initialization methods for Holt-Winters model.

Big Data-Based Air Demand Prediction for the Improvement of Airport Terminal Environment in Urban Area (도심권 공항 터미널 환경 개선을 위한 빅 데이터 기반의 항공수요예측)

  • Cho, Him-Chan;Kwag, Dong-gi;Bae, Jeong-hwan
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.165-170
    • /
    • 2019
  • According to the statistics of the Ministry of Land Transport and Transportation in 2018, the average annual average number of air traffic users for has increased by 5.07% for domestic flights and 8.84% for international flights. Korea is facing a steady rise in demand from foreign tourists due to the Korean Wave. At the same time, a new lifestyle that values the quality of life of individuals is taking root, along with the emergence of LCC, and Korean tourists' overseas tours are also increasing, so improvement and expansion of domestic airport passenger terminals is urgently needed. it is important to develop a structured airport infrastructure by making efficient and accurate forecasts of aviation demand. in this study, based on the Big Data, long-term domestic and international demand forecasts for urban airports were conducted.. Domestic flights will see a decrease in the number of airport passengers after 2028, and international flights will continue to increase. It is imperative to improve and expand passenger terminals at domestic airports.

The Effect of the Demand Forecast on the Energy Mix in the National Electricity Supply and Demand Planning (전력수급계획 수립시 수요예측이 전원혼합에 미치는 영향)

  • Kang, Kyoung-Uk;Ko, Bong-Jin;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.114-124
    • /
    • 2009
  • The Ministry of Knowledge and Economy (MKE) establishes the Basic Plan for Long-Term Electricity Supply and Demand(BPE) biannually, a governmental plan for the stable electricity supply. This study investigated the effects of the electric demand forecast on the energy mix. A simplified simulation model was developed, which replaces the WASP program developed by the KPX and verified by comparing both results. Three different electric demand scenarios were devised based upon the 2005 electric demand forecast: Proper, 5 % higher, and 5% lower. The simplified model calculates the energy mix for each scenario of the year 2005. Then it calculates the energy mix for the proper electric demand forecast of the year 2007 using the energy mixes of the three scenarios as the initial conditions, so that it reveals the effect of electric demand forecast of the previous BPE on the energy mix of the next BPE. As the proper electric demand forecasts of the year 2005 and 2007 are the same, there is no change in the previous and the next BPEs. However when the electric demand forecasts were 5% higher in the previous BPE and proper in the next BPE, some of the planned power plant construction in the previous BPE had to be canceled. Similarly, when the electric demand forecasts were 5% lower in the previous BPE and proper in the next BPE, power plant construction should be urgently increased to meet the increased electric demand. As expected the LNG power plants were affected as their construction periods are shorter than coal fired or nuclear power plants. This study concludes that the electric demand forecast is very important and that it has the risk of long term energy mix.

A Binomial Weighted Exponential Smoothing for Intermittent Demand Forecasting (간헐적 수요예측을 위한 이항가중 지수평활 방법)

  • Ha, Chunghun
    • Journal of the Society of Korea Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • Intermittent demand is a demand with a pattern in which zero demands occur frequently and non-zero demands occur sporadically. This type of demand mainly appears in spare parts with very low demand. Croston's method, which is an initiative intermittent demand forecasting method, estimates the average demand by separately estimating the size of non-zero demands and the interval between non-zero demands. Such smoothing type of forecasting methods can be suitable for mid-term or long-term demand forecasting because those provides the same demand forecasts during the forecasting horizon. However, the smoothing type of forecasting methods aims at short-term forecasting, so the estimated average forecast is a factor to decrease accuracy. In this paper, we propose a forecasting method to improve short-term accuracy by improving Croston's method for intermittent demand forecasting. The proposed forecasting method estimates both the non-zero demand size and the zero demands' interval separately, as in Croston's method, but the forecast at a future period adjusted by binomial weight according to occurrence probability. This serves to improve the accuracy of short-term forecasts. In this paper, we first prove the unbiasedness of the proposed method as an important attribute in forecasting. The performance of the proposed method is compared with those of five existing forecasting methods via eight evaluation criteria. The simulation results show that the proposed forecasting method is superior to other methods in terms of all evaluation criteria in short-term forecasting regardless of average size and dispersion parameter of demands. However, the larger the average demand size and dispersion are, that is, the closer to continuous demand, the less the performance gap with other forecasting methods.

A Study on the Methodology of Building Energy Consumption Estimation and Energy Independence Rate for Zero Energy City Planning Phase (제로에너지시티 계획을 위한 건물에너지 수요 예측 방법론 개발 및 자립률 산정에 대한 연구)

  • Bae, Eun-ji;Yoon, Yong Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.29-40
    • /
    • 2019
  • In response to the rapid climate change, in order to save energy in the field of buildings, the country is planning not only zero energy buildings but also zero energy cities. In the Urban Development Project, the Energy Use Plan Report is prepared and submitted by predicting the amount of energy demand at the planning stage. However, due to the activation of zero-energy buildings and the increase in the supply of new and renewable energy facilities, the energy consumption behavior of buildings in the city is changing from the previous ones. In this study, to estimate urban energy demand of Zero Energy City, building energy demand forecasts based on "Passive plans for use of energy based primary energy consumption", "Actual building energy usage data from Korea Appraisal Board" and "data from Certification of Building Energy Efficiency Rating" as well as demand forecast according to existing "Consultation about Energy Use Plan Code" were calculated and then applied to Multifunctional Administrative City 5-1 zone to compare urban total energy demand forecasts.