• Title, Summary, Keyword: Denoising

Search Result 294, Processing Time 0.029 seconds

Improving Non-Profiled Side-Channel Analysis Using Auto-Encoder Based Noise Reduction Preprocessing (비프로파일링 기반 전력 분석의 성능 향상을 위한 오토인코더 기반 잡음 제거 기술)

  • Kwon, Donggeun;Jin, Sunghyun;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.491-501
    • /
    • 2019
  • In side-channel analysis, which exploit physical leakage from a cryptographic device, deep learning based attack has been significantly interested in recent years. However, most of the state-of-the-art methods have been focused on classifying side-channel information in a profiled scenario where attackers can obtain label of training data. In this paper, we propose a new method based on deep learning to improve non-profiling side-channel attack such as Differential Power Analysis and Correlation Power Analysis. The proposed method is a signal preprocessing technique that reduces the noise in a trace by modifying Auto-Encoder framework to the context of side-channel analysis. Previous work on Denoising Auto-Encoder was trained through randomly added noise by an attacker. In this paper, the proposed model trains Auto-Encoder through the noise from real data using the noise-reduced-label. Also, the proposed method permits to perform non-profiled attack by training only a single neural network. We validate the performance of the noise reduction of the proposed method on real traces collected from ChipWhisperer board. We demonstrate that the proposed method outperforms classic preprocessing methods such as Principal Component Analysis and Linear Discriminant Analysis.

Why Gabor Frames? Two Fundamental Measures of Coherence and Their Role in Model Selection

  • Bajwa, Waheed U.;Calderbank, Robert;Jafarpour, Sina
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.289-307
    • /
    • 2010
  • The problem of model selection arises in a number of contexts, such as subset selection in linear regression, estimation of structures in graphical models, and signal denoising. This paper studies non-asymptotic model selection for the general case of arbitrary (random or deterministic) design matrices and arbitrary nonzero entries of the signal. In this regard, it generalizes the notion of incoherence in the existing literature on model selection and introduces two fundamental measures of coherence-termed as the worst-case coherence and the average coherence-among the columns of a design matrix. It utilizes these two measures of coherence to provide an in-depth analysis of a simple, model-order agnostic one-step thresholding (OST) algorithm for model selection and proves that OST is feasible for exact as well as partial model selection as long as the design matrix obeys an easily verifiable property, which is termed as the coherence property. One of the key insights offered by the ensuing analysis in this regard is that OST can successfully carry out model selection even when methods based on convex optimization such as the lasso fail due to the rank deficiency of the submatrices of the design matrix. In addition, the paper establishes that if the design matrix has reasonably small worst-case and average coherence then OST performs near-optimally when either (i) the energy of any nonzero entry of the signal is close to the average signal energy per nonzero entry or (ii) the signal-to-noise ratio in the measurement system is not too high. Finally, two other key contributions of the paper are that (i) it provides bounds on the average coherence of Gaussian matrices and Gabor frames, and (ii) it extends the results on model selection using OST to low-complexity, model-order agnostic recovery of sparse signals with arbitrary nonzero entries. In particular, this part of the analysis in the paper implies that an Alltop Gabor frame together with OST can successfully carry out model selection and recovery of sparse signals irrespective of the phases of the nonzero entries even if the number of nonzero entries scales almost linearly with the number of rows of the Alltop Gabor frame.

A Baseline Correction for Effective Analysis of Alzheimer’s Disease based on Raman Spectra from Platelet (혈소판 라만 스펙트럼의 효율적인 분석을 위한 기준선 보정 방법)

  • Park, Aa-Ron;Baek, Sung-June
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper, we proposed a method of baseline correction for analysis of Raman spectra of platelets from Alzheimer's disease (AD) transgenic mice. Measured Raman spectra include the meaningful information and unnecessary noise which is composed of baseline and additive noise. The Raman spectrum is divided into the local region including several peaks and the spectrum of the region is modeled by curve fitting using Gaussian model. The additive noise is clearly removed from the process of replacing the original spectrum with the fitted model. The baseline correction after interpolating the local minima of the fitted model with linear, piecewise cubic Hermite and cubic spline algorithm. The baseline corrected models extract the feature with principal component analysis (PCA). The classification result of support vector machine (SVM) and maximum $a$ posteriori probability (MAP) using linear interpolation method showed the good performance about overall number of principal components, especially SVM gave the best performance which is about 97.3% true classification average rate in case of piecewise cubic Hermite algorithm and 5 principal components. In addition, it confirmed that the proposed baseline correction method compared with the previous research result could be effectively applied in the analysis of the Raman spectra of platelet.

A screening of Alzheimer's disease using basis synthesis by singular value decomposition from Raman spectra of platelet (혈소판 라만 스펙트럼에서 특이값 분해에 의한 기저 합성을 통한 알츠하이머병 검출)

  • Park, Aaron;Baek, Sung-June
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2393-2399
    • /
    • 2013
  • In this paper, we proposed a method to screening of Alzheimer's disease (AD) from Raman spectra of platelet with synthesis of basis spectra using singular value decomposition (SVD). Raman spectra of platelet from AD transgenic mice are preprocessed with denoising, removal background and normalization method. The column vectors of each data matrix consist of Raman spectrum of AD and normal (NR). The matrix is factorized using SVD algorithm and then the basis spectra of AD and NR are determined by 12 column vectors of each matrix. The classification process is completed by select the class that minimized the root-mean-square error between the validation spectrum and the linear synthesized spectrum of the basis spectra. According to the experiments involving 278 Raman spectra, the proposed method gave about 97.6% classification rate, which is better performance about 6.1% than multi-layer perceptron (MLP) with extracted features using principle components analysis (PCA). The results show that the basis spectra using SVD is well suited for the diagnosis of AD by Raman spectra from platelet.