• Title, Summary, Keyword: Distribution network control

Search Result 408, Processing Time 0.052 seconds

Feeder Loop Line Control for the Voltage Stabilization of Distribution Network with Distributed Generators

  • Jeong, Bong-Sang;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • When renewable sources are connected to the distribution network in the form of a distributed generators(DGs), the effect of intermittent output appears as voltage fluctuation. The surplus power at the consumer ends results in the reverse power flow to the distribution network. This reverse power flow causes several problems to the distribution network such as overvoltage. Application of the reactive power control equipment and power flow control by means of BTB inverter have been suggested as the general solutions to overcome the overvoltage, but they are not economically feasible since they require high cost devices. Herein, we suggest the feeder loop line switch control method to solve the problem.

Oil Flow Distribution Control of Engine Lubrication System Using Orifice Component (오리피스를 이용한 엔진 윤활시스템 유량분배 제어)

  • Yun Jeong-Eui
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • It is very important to control pressure and flow rate distribution on each component of engine lubrication network. Sometimes many kinds of orifice are used to control flow rate in the hydraulic lubrication field. In this study orifices were adopted on the lubrication network to control oil flow rate distribution. And unsteady transient flow network analysis was carried out to find out the effects of orifices on the engine oil circuit system.

A Comparison of the performance of mean, median, and precedence control charts for nonnormal data

  • Kim, Jung-Hee;Lee, Sung-Im;Park, Heon-Jin;Lee, Jae-Cheol;Jang, Young-Chul
    • Proceedings of the Korean Statistical Society Conference
    • /
    • /
    • pp.197-201
    • /
    • 2005
  • In this article, we will compare the performance of the mean control chart, the median control chart, the transformed mean control chart, the transformed median control chart, and the precedence control chart by simulation study. For control charts with transformed data, Yeo-Johnson transformation is used. Under the in-control condition, ARL's in all control charts coincide with the designed ARL in the normal distribution, but in the other distributions, only the precedence control chart provides the in-control ARL as designed. Under the out-of-control condition, the mean control chart is preferred in the normal distribution and the median control chart is preferred in the heavy-tailed distribution and the precedence control chart outperforms in the short-tailed distribution.

  • PDF

Development of Intelligence Power Distribution Module with Control Area Network (CAN 통신을 이용한 IPDM(intelligence power distribution module) 개발)

  • Lee D.K.;Ko K.W.;Koh K.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.37-38
    • /
    • 2006
  • In this paper, power distribution module for car relay control with Control area network is developed. This module is called Intelligent power distribution module because it has microprossor which can communicate with other electric module such as ECU and Body control module and also has self-diagonasis function. The developed IPDM module is tested on vehicle and the good performance has been achieved.

  • PDF

A Study on Computer Application Program to an Efficient Supervisory Control of the Power Distribution System (효율적인 배전관리를 위한 컴퓨터 응용 프로그램 연구)

  • Lee, B.C.;Seo, Y.R.;Lee, J.H.;Chung, C.H.
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.96-98
    • /
    • 1993
  • In accordance with increase of electrical power demanded, more efficient supervisory control of distribution system is required. This study contains development of MMI(man-machine-interface) system with GUI(graphic-user-interface), for the automatic power distribution system. The main function of MMI system are to edit network of power distribution, to view network, to warnning a breakdown and to management of data base for network. The GUI function of MMI system enables more efficient management of power distribution system.

  • PDF

Control of temperature distribution in a thermal stratified tunnel by using neural networks (신경회로망을 이용한 열성층 풍동내의 온도 분포 제어)

  • 부광석;김경천
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.147-150
    • /
    • 1996
  • This paper describes controller design and implementation method for controlling the temperature distribution in a thermal stratified wind tunnel(TSWT) by using a neural network algorithm. It is impossible to derive a mathematical model of the relation between heat inputs and temperature outputs in the test section of the TSWT governed by a nonlinear turbulent flow. Thus inverse neural network models with a multi layer perceptron structure are used in a feedforward control loop and feedback control loop to generate an arbitrary temperature distribution in the test section of the TSWT.

  • PDF

Performance Improvement of Air Conditioner Network System using Wireless Sensors Through System Performance Index and Dynamic Power Distribution Control (시스템 성능 지수 및 동적 전력분산 제어를 통한 무선센서를 이용한 에어컨 네트워크 시스템의 성능 개선)

  • Choi, Ho-seek;Kwon, Woo-hyen;Yoon, Byung-keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.64-70
    • /
    • 2019
  • Wireless sensors have been developed in numerous ways for enhancing the convenience of installation, management and maintenance of sensors. Energy harvesting wireless sensors, which can collect energy from the external environment for permanent usage without the need of recharging and exchanging batteries, have been developed and employed used in Internet of Things and at various industrial sites. Energy harvesting wireless sensors are significantly affected by the sensor lifespan to sudden variation in the external environment. Furthermore, reduction in the sensor operating timespan can greatly affect the characteristics of the devices connected through a network. In this paper, a system performance index is proposed that can comprehensively evaluate the lifespan of a solar cell wireless sensor, determine the characteristics of devices connected to the associated network, and recommend dynamic power distribution control for improving the system performance index. Improvement in the system performance index was verified by applying the proposed dynamic power distribution control to an air conditioner network system using a solar cell wireless sensor. Obtained results corroborate that the dynamic power distribution control can extend the lifespan of the incorporated wireless sensor and reduce the air conditioner's power consumption.

Circulating Current Reduction Method during Distribution Network Dynamic Reconfiguration using Active Phase Controller (능동위상제어기를 이용한 배전선로 자율 재구성 시 순환전류 감소 기법)

  • Kim, Soo-Yeon;Jeong, Da-Woom;Park, Sung-Jun;Kim, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.6-12
    • /
    • 2020
  • In recent years, the demand for the distribution of energy resource has been increasing. However, the output power is limited by the stability of the distribution network. This study proposes an active distribution network that can reconfigure the distribution line using an active phase controller. The conventional distribution network has a fixed structure, whereas the proposed active distribution network has a variable structure. Therefore, the active distribution network can increase the output power of the distribution energy resource and reduce the overload of distribution line facilities. The active phase controller has two operation modes to minimize the circulating current during dynamic reconfiguration. In this study, the voltage and current control algorithms are proposed for the active phase controller. The proposed method for the active phase controller is simulated via PSIM simulation.

An Operational Strategy for Inventory Control of Networked Regional Distribution Centers (지역통합 네트워크관리하의 재고통제 운용전략에 관한 연구)

  • Kim, Byeong-Chan;Choi, Jin-Yeong
    • Journal of the Society of Korea Industrial and Systems Engineering
    • /
    • v.31 no.3
    • /
    • pp.110-116
    • /
    • 2008
  • Operational strategy for inventory control in the distribution system has been given attention. If an individual enterprise implements the strategy, it is not easy to gain scale merits because of limited quantity or burden of inventory. In this study, we propose an operational strategy for inventory control that considers managerial integration of regional distribution centers (RDCs) and present a model of it. In a network of several RDCs, they could share inventory information and supply parts for others in case of an inventory shortage. And a numerical example of the network is illustrated, which compares two operational strategies, integration management of RDCs and individual management of them. The result shows total cost reduction in the strategy of integration management through the efficient inventory control of multi-echelon distribution.