• Title, Summary, Keyword: EPDM rubber

Search Result 201, Processing Time 0.042 seconds

Preparation and Properties of Polyorganosiloxane Modified Maleated EPDM/EPDM Rubber Vibration Isolator (Polyorganosiloxane 변성 말레화 EPDM/EPDM 방진고무의 제조와 그 특성)

  • Kang, Doo-Whan;Kim, So-Mi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.581-585
    • /
    • 2010
  • The surface of Alnico, one of the industrial dust waste, was treated with 1,3,5-trivinyl-1,3,5-trimethylcyclotrisilazane (VMS) as a surface treating agent and used as the filler for vibration isolator rubber. Maleated EPDM prepared from bulk polymerization of EPDM with maleic anhydride was copolymerized with ${\alpha},{\omega}$-bis(3-aminopropyl)polydimethylsiloxane to obtain maleated EPDM-polydimethylsiloxane copolymer (MEPDM-PDMS). EPDM/Alnico/MEPDM-PDMS vibration isolator rubber was prepared from compounding with Alnico treated with surface treating agent, 25 and 50 phrs to EPDM, respectvely based on 1 to 10 wt% of MEPDM-PDMS to EPDM. From the measurement of the thermal properties to the rubber, the glass transition temperatures (Tg) for the rubber containing maleated EPDM-PDMS copolymer was slightly lower temperature, $33^{\circ}C$ than EPDM rubber, and also DMA results showed higher tan ${\delta}$ peak to the rubber prepared from compounding with EPDM-PDMS copolymer. From the results, rubber prepared using EPDM-PDMS copolymer had better vibration isolator property.

Cure Characteristics, Physical Properties and Ozone Resistance of Butyl Rubber and EPDM Rubber Blends (Butyl고무와 EPDM고무 블렌드의 경화특성, 물리적 성질 및 내오존성)

  • Park, Chan-Young;Hwang, Young-Bea
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.329-334
    • /
    • 2011
  • In general, butyl rubber(IIR : isobutylene isoprene rubber) has excellent gas permeability resistance and impact absorbance property as low resilience elastomer. In this experiment butyl rubber blends with EPDM(ethylene propylene diene monomer) were prepared by mechanical mixing method. Curing behavior, physical properties and ozone resistance etc. were subsequently examined. Measurement results of gas transmission rate test shows that butyl rubber contents above 50 wt% showed significant decrease in gas permeability resistant property. However, in butyl rubber/EPDM blend, EPDM contents above 25 wt% indicates no surface change due to improvement of ozone resistance under the condition of 50 pphm, $50^{\circ}C$, 120 hrs.

Mechanical Property, Thermal Conductivity, Rebound Resilience and Thermal Property of Chloro Isobutylene Isoprene Rubber/Ethylene Propylene Diene Monomer Blend

  • Hwang, Young-Bea;Lee, Won-Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.80-85
    • /
    • 2018
  • Chloro isobutylene isoprene rubber (CIIR) and ethylene propylene diene monomer (EPDM) compounded with other formulation chemicals, depending on the polymer blend, were prepared by mechanical mixing. After manufacturing the rubber vulcanizate by compression molding with a hot press, the mechanical and thermal properties including thermal conductivity, rebound resilience of the CIIR/EPDM blends were measured. As the EPDM rubber content increased, hardness and tension set showed a tendency to increase. Pure CIIR exhibited the lowest tensile strength; however, tensile strength increased with loading of EPDM rubber. On the other hand, in CIIR rubber, which is usually a low-rebound elastomer owing to a high damping effect, rebound resilience exhibited an increasing trend as the content of EPDM rubber increased. As the EPDM rubber content increased, thermal stability was improved due to reduction of decomposition rate in the rubber region of the blend vulcanizate.

A Study on Recycling of EPDM Reclaimed Rubber (폐 EPDM 고무의 재활용을 위한 기초적 연구)

  • Jang, Doo-Hee;Kim, Ji-Hoon;Kim, Young-Ju
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.365-370
    • /
    • 2010
  • In this study, we carried out the evaluation of EPDM(Ethylene Propylene Diene Monomer) reclaimed rubber mixing with natural rubber at various mixing ratio to reuse as rubber filler. The scorch time and moony viscosity was analyzed to evaluate the effect of cure behavior. And also, we analyzed the tensile strength, the elongation at break and cure time to evaluate the variation of cure behavior. As the results, the scorch time and optimal cure time was decreased according to the increasing of EPDM reclaimed rubber. However, the moony viscosity was increased at each mixing ratio. In case of the added EPDM reclaimed rubber was 20 phr(parts by weight per 100 parts by weight of rubber), the hardness and specific gravity was increased a little. The hardness and specific gravity was increased in rapidly under 40 phr of the added EPEM reclaimed rubber. The tensile strength and elongation at break of the compound of natural and EPDM reclaimed rubber was rapidly decreased compared with its natural rubber when the ratio of adding EPDM reclaimed rubber was over 40 phr.

Development of Rubber Composite Materials Using Waste EPDM (폐 EPDM을 이용한 고무 복합 소재 개발)

  • Park, Dong-Kyu;Hong, Yeo-Joo;Jeong, Keuk-Min;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.121-128
    • /
    • 2012
  • Waste EPDM(W-EPDM) collected from the automotive weather strip and the gasket of a laundry machine has not been effectively recycled. Using this W-EPDM powder and other ingredients, i.e., binder(polyolefin resin, polyolefin elastomer, etc.), filler and additives, various economic rubber composites were made by extrusion. In advance of main experiments, the effects of ultrasonic treatment of W-EPDM on the property of rubber composites, comparison in the property of the composites of W-EPDM with those of virgin and devulcanized EPDM, and waste tire rubber were investigated. Also, the properties of the rubber composites extruded with a 12-screw extruder were compared with those extruded with twin-screw extruder. Various W-EPDM composites for synthetic turf filler and car mat were extruded and injection molded, and 3 main properties of tensile strength, elongation and hardness were investigated to develop economical and proper recipes of the rubber composites.

Study on Manufacturing and Characteristics of Silicone/EPDM Rubber Blend (실리콘/EPDM고무 블렌드의 제조와 특성에 관한 연구)

  • 김진국;이형규
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.406-413
    • /
    • 2001
  • Blending has become an interesting way for preparing new materials with tailored properties. Unfortunately, many materials are incompatible due to the difference in their viscoelastic properties, surface energy and interaction. Therefore, the properties of polymer blends are not obtained as expected levels. Silicone rubber has an excellent heat-resistance and electrical characteristics, and ethylene propylene diene monomer (EPDM) rubber also has good mechanical properties. The purpose of this study is to develop a new engineering material which has excellent electrical and mechanical properties through blending of silicone with EPDM rubber.

  • PDF

Modification of EPDM Rubbers for Enhancement of Environmental Durability of Aerator Membrane (산기관용 멤브레인 고무판의 환경내구성 향상을 위한 EPDM 고무의 개질)

  • Ahn, Won-Sool
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.107-112
    • /
    • 2008
  • A study on the enhancement of environmental durability of EPDM rubber materials for the aerator membrane was performed using a butyl rubber as a modifier. A conventional EPDM rubber formulation was evaluated as having about 26.0 wt% or more oil content from the chloroform immersion test. These oils would be gradually and continuously deleted from the aerator membrane when directly exposed to a waste-water or chemically corrosive fluids, making the membrane less flexible and the performance worse. To improve this, a butyl rubber (IIR) was utilized as the modifier for a low-ENB type of EPDM rubber formulation with low-oil content. The environmental durability of the IIR-modified EPDM rubber material was expected to be greatly enhanced compared to the conventional one. However, the mechanical and performance properties such as elongation, tensile strength, and air bubble size, etc. were still maintained as good as in the conventional one. Furthermore, TGA analysis of the IIR-modified EPDM material showed that there would be partially compatible between IIR and EPDM. It also showed that the initial degradation temperature of the IIR-modified EPDM could be somewhat increased, exhibiting the enhanced compatibility among the components and, thereby, more enhanced environmental durability.

Gas Impermeability Enhancement of EFDM/Crosslinked IIR Blends (Crosslinked IIR의 블렌드비에 따른 EPDM의 내기체투과특성 향상)

  • Kim, Hyun-Jun;Jung, Il-Hyun;Hong, In-Kwon;Park, Jae-Woo
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.193-200
    • /
    • 1998
  • It is well known that EPDM(ethylene propylene diene monomer) rubber has inherently excellent resistance to the weathering, ozone, heat, cold and moisture, whereas crosslinked IIR (isobutylene isoprene divlnyl benzene terpolymer) shows proper resistance to the water and gas permeation. Various characteristics of EPDM blend with crosslinked IIR such as curing characteristics, mechanical properties, dispersion of minor component and gas impermeability were explored. The optimum curing time $(t_{90})$ examined with peroxide was decreased by adding small amount of crosslinked IIR to the EPDM rubber. Mechanical properties of blends such as tensile strength, hardness and elongation at break were enhanced by increasing EPDM content. These results might be explained with the affinity of carbon black to the EPDM rubber. On the other hand, the physical properties were not changed significantly after aging, and the increase of crosslinked IIR fraction caused the decrease of compression set to small rate. EPDM rubber shows different behavior with crosslinked IIR in oxygen permeability. By adding 30wt.% crosslinked IIR to the EPDM rubber, the resistance to the oxygen permeation was improved up to three times than that of pure EPDM rubber. Conclusively, EPDM blend containing 30wt.% crosslinked IIR might be commercially applied to the o-ring and electric parts because of its proper resistance to the weathering, ozone and oxygen permeability.

  • PDF

Effect of trans-octylene rubber(TOR) on the properties of NBR/EPDM rubber blends (Trans-octylene rubber(TOR)의 첨가가 NBR/EPDM 고무블렌드의 물성에 미치는 영향)

  • Shin, Yung-Sik;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.149-156
    • /
    • 2000
  • trans-octylene rubber(TOR) was melt-blended with an incompatible NBR/EPDM (70/30) blend. Mixing torque and temperature were reduced as TOR was added to the NBR/EPDM blend. Rheometer results indicated that TOR participated in vulcanization and became a part of network. A scanning electron micrograph demonstrated that EPDM was dispersed in NBR matrix in the blend and the addition of TOR led to a finer dispersion of EPDM particles. On the addition of TOR, the tensile strength, the tensile strain as well as the modulus of the blend vulcanizates increased. The ozone resistance of the blends determined in terms of critical stress-strain parameter was significantly enhanced in the blend as TOR was added. Improvements in the properties were believed to be associated with fine morphology and the increase in crosslink density due to the chain entanglement of the ternary blends.

  • PDF

Thermoplastic Polyurethane (TPU)/Ethylene-Propylene-Diene Monomer Rubber (EPDM) and TPU/Polybutadiene Rubber (BR) Blends for the Application of Footwear Outsole Materials (신발겉창 재료용 열가소성 폴리우레탄 (TPU)/에틸렌-프로필렌-디엔 고무와 TPU/부타디엔 고무 블렌드)

  • Kim, Ji-Hoo;Kim, Gue-Hyun
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.195-200
    • /
    • 2013
  • The main objective of this study is to improve abrasion resistance and wet slip resistance of thermoplastic polyurethane (TPU) by blending with ethylene-propylene-diene monomer rubber (EPDM) or polybutadiene rubber (BR) for the application of the footwear outsole materials. With addition of 10 wt% of EPDM or BR, TPU/EPDM and TPU/BR blends exhibited higher NBS abrasion resistance, tensile properties and wet slip resistance than TPU. However, with further increasing content of EPDM and BR, abrasion resistance and tensile properties of the blends decreased. Improvement in abrasion resistance and tensile properties with 10 wt% of addition of EPDM or BR may be due to better microphase separation of TPU.