• Title, Summary, Keyword: Electroplated Copper

Search Result 73, Processing Time 0.103 seconds

Effects of Organic Additives on Residual Stress and Surface Roughness of Electroplated Copper for Flexible PCB

  • Kim, Jongsoo;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.154-158
    • /
    • 2007
  • For the application of flexible printed circuit board (FPCB), electroplated copper is required to have low surface roughness and residual stress. In the paper, the effects of surface roughness and residual stress of electroplated copper as thick as $8{\mu}m$ were studied on organic additives such as inhibitor, leveler and accelerator. Polyimide film coated with sputtered copper was used as a substrate. Surface roughness and surface morphology were measured by 3D-laser surface analysis and FESEM, respectively. Residual stress was calculated by Stoney's equation after measuring radius curvature of specimen. The addition of additives except high concentration of accelerator in the electrolyte decreased surface roughness of electroplated copper film. Such a tendency was explained by the function of additives among which the inhibitor and the leveler inhibit electroplating on a whole surface and prolusions, respectively. The accelerator plays a role in accelerating the electroplating in valley parts. The inhibitors and the leveler increased residual stress, whereas the accelerator decreased it. It was thought to be related with entrapped additives on electroplated copper film rather than the preferred orientation of electroplated copper film. The reason why additives lead to residual stress remains for the future work.

Development of the Copper Core Balls Electroplated with the Solder of Sn-Ag-Cu

  • Imae, Shinya;Sugitani, Yuji;Nishida, Motonori;kajita, Osamu;Takeuchi, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • /
    • pp.1207-1208
    • /
    • 2006
  • We developed the copper core ball electroplated with Sn-Ag-Cu of the eutectic composition which used mostly as Pb free solder ball with high reliability. In order to search for the practicality of this developed copper core ball, the evaluation was executed by measuring the initial joint strength of the sample mounted on the substrate and reflowed and by measuring the joint strength of the sample after the high temperature leaving test and the constant temperature and the humidity leaving test. This evaluation was compered with those of the usual other copper core balls electroplated with (Sn,Sn-Ag,Sn-Cu,Sn-Bi) and the Sn-Ag-Cu solder ball.

  • PDF

Microfabrication of Microwave Transceivers for On-Chip Near-Field Electromagnetic Shielding Characterization of Electroplated Copper Layers (극소형 전자기파 송수신기의 제작 및 전기도금된 구리박막의 칩단위 근접 전자기장 차폐효과 분석)

  • Gang, Tae-Gu;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.959-964
    • /
    • 2001
  • An experimental investigation on the near-field electromagnetic loss of thin copper layers has been presented using microfabricated microwave transceivers for applications to multi-chip microsystems. Copper layers in the thickness range of 0.2$\mu$m∼200$\mu$m have been electroplated on the Pyrex glass substrates. Microwave transceivers have been fabricated using the 3.5mm$\times$3.5mm nickel microloop antennas, electroformed on the silicon substrates. Electromagnetic radiation loss of the copper layers placed between the microloop transceivers has been measured as 10dB∼40dB for the wave frequency range of 100MHz∼1GHz. The 0.2$\mu$m-thick copper layer provides a shield loss of 20dB at the frequencies higher than 300MHz, whereas showing a predominant decreases of shield loss to 10dB at lower frequencies. No substantial increase of the shield effectiveness has been found for the copper shield layers thicker that 2 $\mu$m.

Fabrication & Evaluation of electroplated Copper Foils for Printed Circuit Board Applications (인쇄 배선용 전해동박의 제조에 관한 연구)

  • Yoon, Y. K.;Lee, J. H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 1972
  • Copper -clad laminate(CCL) was fabricated and evaluated by bonding 35${\pm}$5${\mu}$ thick electroplated copper foils with a suitable adhesive to an insulating base such as phenolic resin laminate. In this study, electroplating methods and conditions were studied to produced good quality copper foils for printed circuit board applications. The electroplating bath solutions used were a copper-sulfate solution and a concentrated copper fluoborate solution. A surface roughening treatment that improved the adhesive strength of copper foils with an insulating laminate was also developed . A conventional copper sulfate solution containing sulfuric acid was used for the roughening treatment.

  • PDF

The Mechanical Property of Electroplated Cu Film

  • Cho, Chul-Ho;Ha, Seung-Mo;Ahn, Yoo-Min;Kim, Dae-Kun;Lee, Jae-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • /
    • pp.139-140
    • /
    • 2002
  • This paper discusses the effect of plating condition on the mechanical property of electroplated Cu film. Current density, the amount of the organic additives was found to affect the residual stress of electroplated copper film. The result show that, in the case of residual stress, the copper film deposited at higher additive result in lower residual stress and plating current by $15mA/cm^2$ induced a better result than any other ones.

  • PDF

The Microstructure and physical properties of electroplated Cu films (열처리에 따른 Cu 전해도금막의 미세구조 및 물리적성질 변화)

  • 권덕렬;박현아;김충모;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.2
    • /
    • pp.72-78
    • /
    • 2004
  • Cu seed layers deposited by magnetron sputtering onto tantalum nitride barrier films were treated with ECR plasma and then the copper films were electroplated and rapid thermal annealed in an argon or nitrogen atmosphere at various temperatures ranging from 200 to $500^{\circ}C$. Changes in the microstructure and physical properties of the copper films electroplated on the hydrogen ECR plasma cleaned copper seed layers were investigated using X-ray diffraction (XRD), electron back-scattered diffraction (EBSD), and atomic force microscopy (AFM) analyses. It was found that the copper film undergoes complete recrystallization during annealing at a temperature higher than $400^{\circ}C$. The resistivity of the Cu film tends to decrease and the degree of (111) preferred orientation tends to increase as the annealing temperature increases. Theoptimum annealing condition for obtaining the film with the lowest resistivity, the smoothest surface and the highest degree of the (111) preferred orientation is rapid thermal annealing in a nitrogen atmosphere at $400^{\circ}C$ for 120 s. The resistivity and the surface roughness of the electroplated copper film annealed under this condition are 1.98 $\mu$O-cm and 17.77 nm, respectively.

Interface between the Electroplated Copper-cobalt Thin Films and the Substrate

  • Kim, Jin-Gyu;Lee, Jung-ju;Bae, Jong-hak;Bang, Won-bae;Hong, Kim-in;Yoon, C. H.;Son, Derac;Jeong, Kee-ju
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.119-122
    • /
    • 2006
  • We electroplated copper-cobalt thin films on a silicon substrate, which had 150 nm thick copper seed layer. The adhesion between the two metallic layers could be increased by utilizing a proper organic additive, pulse plating technique, and high temperature annealing. The thin films exhibited columnar growth of the deposits and enhanced adhesion. This is attributed to the grain growth mechanism introduced by the additive and annealing.

Evaluation of cytotoxicity of electroplated stainless steel orthodontic wire (전기도금한 교정용 스테인레스스틸 선재의 세포독성에 관한 연구)

  • Lee, Gye-Hyeong;Cho, Jin-Hyoung;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.35 no.2
    • /
    • pp.127-136
    • /
    • 2005
  • The purpose of this study was to examine the cytotoxicity of orthodontic wire which had an increased diameter through electroplating, and to evaluate its possible clinical applications, First. nickel plating was carried out on the commercially available stainless steel wire using an electroplating technique For the comparison of the electroplated wire with ready made stainless steel wire and titanium or copper. each wire was incubated for 72 hours in a medium. The release of the metal ion was measured using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrophotometer). Balb/c 3T3 mouse fibroblast was put on a microplate and placed in an incubated medium of 75%, 50%, and 20% dilation. An MTT analysis was used to compare with the medium only. The change in absorbency value of each wire group and the difference of absorbency value according to the change of dilution was measured The results of ICP-AES analysis showed that great amount nickel iou was isolated from electroplated orthodontic wires and great amount copper ion was isolated from copper. The results of the MTT analysis showed that there was no difference in the absorbency value of titanium at any dilution. However, the electroplated wires (p<0.001) the stainless steel wires (p<0.05) and the copper (P<0.001) were statistically significantly lower than those of medium only at all dilutions. Assessment as per ISO 10993, part 5, showed that electroplated wire was alloted to 'moderate cytotoxic' the titanium and stainless steel wire were 'non-cytotoxic' The results of this study indicate that the electroplated orthodontic wires need additional efforts to decrease cytotoxicity for their clinical applications.

Formation of Copper Electroplated Electrode Patterning Using Screen Printing for Silicon Solar Cell Transparent Electrode (실리콘 태양전지 투명전극용 스크린 프린팅을 이용한 구리 도금 전극 패터닝 형성)

  • Kim, Gyeong Min;Cho, Young Joon;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.228-232
    • /
    • 2019
  • Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of $Cu_2SO_4$ and $H_2SO_4$ at a current density of $10mA/cm^2$. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about $80{\mu}m$. The contact resistance of the copper electrode is $0.89m{\Omega}{\cdot}cm^2$, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are $1{\Omega}/{\square}$ and $40{\Omega}/{\square}$, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.