• Title, Summary, Keyword: Embedded superscalar processors

Search Result 3, Processing Time 0.047 seconds

Simulation of YUV-Aware Instructions for High-Performance, Low-Power Embedded Video Processors (고성능, 저전력 임베디드 비디오 프로세서를 위한 YUV 인식 명령어의 시뮬레이션)

  • Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.5
    • /
    • pp.252-259
    • /
    • 2007
  • With the rapid development of multimedia applications and wireless communication networks, consumer demand for video-over-wireless capability on mobile computing systems is growing rapidly. In this regard, this paper introduces YUV-aware instructions that enhance the performance and efficiency in the processing of color image and video. Traditional multimedia extensions (e.g., MMX, SSE, VIS, and AltiVec) depend solely on generic subword parallelism whereas the proposed YUV-aware instructions support parallel operations on two-packed 16-bit YUV (6-bit Y, 5-bits U, V) values in a 32-bit datapath architecture, providing greater concurrency and efficiency for color image and video processing. Moreover, the ability to reduce data format size reduces system cost. Experiment results on a representative dynamically scheduled embedded superscalar processor show that YUV-aware instructions achieve an average speedup of 3.9x over the baseline superscalar performance. This is in contrast to MMX (a representative Intel#s multimedia extension), which achieves a speedup of only 2.1x over the same baseline superscalar processor. In addition, YUV-aware instructions outperform MMX instructions in energy reduction (75.8% reduction with YUV-aware instructions, but only 54.8% reduction with MMX instructions over the baseline).

Embedded Multithreading Processor Architecture for Personal Information Devices (개인용 정보 단말장치를 위한 내장형 멀티스레딩 프로세서 구조)

  • Jeong, Ha-Young;Chung, Won-Young;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.9
    • /
    • pp.7-13
    • /
    • 2010
  • In this paper, we proposed a processor architecture that is suitable for next generation embedded applications, especially for personal information devices such as smart phones, tablet PC. Latest high performance embedded processors are developed to achieve high clock speed. Because increasing performance makes design more difficult and induces large overhead, architectural evolution in embedded processor field is necessary. Among more enhanced processor types, out-of-order superscalar cannot be a candidate for embedded applications due to its excessive complexity and relatively low performance gain compared to its overhead. Therefore, new architecture with moderate complexity must be designed. In this paper, we developed a low-cost SMT architecture model and compared its performance to other architectures including scalar, superscalar and multiprocessor. Because current personal information devices have a tendency to execute multiple tasks simultaneously, SMT or CMP can be a good choice. And our simulation result shows that the efficiency of SMT is the best among the architectures considered.

A Performance Study of Embedded Multicore Processor Architectures (임베디드 멀티코어 프로세서의 성능 연구)

  • Lee, Jongbok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.163-169
    • /
    • 2013
  • Recently, the importance of embedded system is growing rapidly. In-order to satisfy the real-time constraints of the system, high performance embedded processor is required. Therefore, as in general purpose computer systems, embedded processor should be designed as multicore architecture as well. Using MiBench benchmarks as input, the trace-driven simulation has been performed and analyzed for the 2-core to 16-core embedded processor architectures with different types of cores from simple RISC to in-order and out-of-order superscalar processors, extensively. As a result, the achievable performance is as high as 23 times over the single core embedded RISC processor.