• Title, Summary, Keyword: Eriochrome cyanine R(ECR)

Search Result 3, Processing Time 0.079 seconds

Spectrophotometric Determination of Scandium(III) with Eriochrome Cyanine R in the Presence of Cetyltrimethylammonium bromide (Cetyltrimethylammonium bromide에서 Eriochrome Cyanine R에 의한 스칸듐(III)의 분광광도법 정량)

  • Cha, Ki-Won;Park, Chan-Il;Kim, Jong-Whon
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.139-144
    • /
    • 1996
  • The spectrophotometric determination method of scandium with eriochrome cyanine R(ECR) and the composition ratio of the complex were investigated in the presence of surfactants. The absorbance increase and red shift of maximum adsorption wavelength of Sc(III)-ECR complex were observed in cetyltrimethylammonium bromide (CTMAB), but those changes were not observed in the sodium dodecyl sulfate(SDS) and Triton X-100. A volume of 5ml of $1{\times}10^{-3}M$ ECR and 10ml of $2{\times}10^{-4}M$ CTMAB are necessary for the determination of $1{\times}10^{-7}{\sim}3.0{\times}10^{-6}M$ Sc(III) at pH 6.5. The apparent molar absorption coefficient of the Sc(III)-ECR-CTMAB, temary complex at 610nm is $5.6{\times}10^5mol^{-1}cm^{-1}L$ and its detection limit is $1.0{\times}10^{-7}M$. The binary complex composition of Sc(III)-ECR is 1:2 and the ternary complex composition of Sc(III)-ECR-CTMAB is 1:3:1.

  • PDF

Spectrophotometric Determination of Scandium(III) in Monazite after Separation Using Amberlite IRC 718 Chelating Resin

  • 박찬일;차기원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1409-1412
    • /
    • 1999
  • The spectrophotometric determination method of scandium with eriochrome cyanine R (ECR) and the composition ratio of the complex were investigated in the presence of surfactants. A volume of 5 mL of 1.0×$10^{-3}$ M ECR and 10 mL of 2.0×$10^{-4}$ M CTMAB are necessary for the determination of 1.0×$10 ^{-7}$ ~ 3.0×$10^{-6}$ M Sc(III) at pH 6.5. The apparent molar absorption coefficient of the Sc(III)-ECR-CTMAB, ternary complex at 610 nm is 5.6×$10^5$ $mol^{-1}cm{-1}$L and its detection limit is 1.0×$10^{-7}$ M. Separation studies were conducted by the column method. The effect of pH, elution solution and the influence of rare earth elements as interferents was discussed. Their separation was carried out in 0.1 M HCl-50% methanol solution and 1.0 M HCl media. The method was applied for the determination of Sc(III) in monazite.

  • PDF

Spectrophotometric Determination of Aluminium Ion in Drinking Water by Flow Injection Analysis (흐름주입분석법에 의한 음용수 중 알루미늄 이온의 분광광도법 정량)

  • Choi, Yong-Wook;Jin, Jae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.5
    • /
    • pp.422-428
    • /
    • 2000
  • Optimum analytical conditions of the aluminium ion were established by flow injection analysis. Eriochrome Cyanine R(ECR) dye reacts with the aluminium ion at pH 6.0 to form a complex that exhibits maximum absorption at 535 nm. Reaction conditions including the mixing and the reaction coil length, the concentration and the pH of the buffer solutio, temperature, and injection loop volume were optimized to intro-duce this reaction into flow injection analysis. The results were as follows. A mixing coil length of 0.5 m and a reaction coil length of 4.0 m, the pH 6.0 and 1M of acetate buffer solution, the ECR concentration of 0.56 mM, the reaction temperature of 40$^{\circ}C$, the injection loop volume of 300${\mu}L$ were chosen as optimum conditions. Under these conditions the detection limit of the aluminiumion was less than 0.05 mg/L and the repeatability was better than 1%. A sampling frequency of 24 times for an hour was achieved. Interfering ions such as $F^-$, HP$O_4^{2-}$, $Fe^{2+}$, $Fe^{3+}$, $Mn^{2+}$, and other anions were tested, interference did not occur up to 1,000mg/L of ion concentration and up to 2,CO0mg/L of sulfate ion con-centration. This method was applied for the determination of aluminium ion in tap water and ground water of Jeonju and the Gochang area. The results showed that the aluminium residual in tap water of the Jeonju area was at a mean of 0.478mg/L and that in tap water of the Gochang area was at a mean of 0.278mg/L. Aluminium ion residual of the tap waters in the Jeonju area was higher level than that in the Gochang area. Aluminium residual in the ground water of the Jeonju area was 0.386 mg/L and was lower compared to 0.564 mg/L for the Gochang area.

  • PDF