• Title, Summary, Keyword: Fault-Tolerance Computing System

Search Result 42, Processing Time 0.041 seconds

Design of Reliable Adaptive Fitter with Fault Tolerance Using DSP (DSP를 이용한 고장허용을 갖는 신뢰 적응 필터 설계)

  • 유동완;이전우;서보혁
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.8-13
    • /
    • 2001
  • LMS algorithm has been used for plant identifier and noise cancellation. This algorithm has been researched for performance enhancement of filtering. The design and development of a reliable system has been becoming a key issue in industry field because the reliability of a system is considered as an important factor to perform the system's function successfully. And the computing with reliability and fault tolerance is a important factor in the case of aviation, system communication, and nuclear plant. This paper presents design of reliable adaptive filter with fault tolerance. Generally, redundancy is used for reliability. In this case it needs computing or circuit for voting mechanism, or fault detection. Therefore it has simple computing, and practicality for application. And in this paper, reliability of adaptive filter is analyzed. The effectiveness of the proposed adaptive filter is demonstrated to the case studies of plant identifier and noise cancellation by using DSP.

  • PDF

Design of Reliable Adaptive Filter with Fault Tolerance Using TMS320C32 (TMS320C32를 이용한 고장허용을 갖는 신뢰 적응 필터 설계)

  • Ryoo, Dong-Wan;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.2429-2432
    • /
    • 2000
  • Adaptive filter algorithm has been used for plant identifier and noise cancellation. This algorithm has been researched for performance enhancement of filtering. The design and development of a reliable system has been becoming a key issue in industry field because the reliability of a system is considered as an important factor to perform the system's function successfully. And the computing with reliability and fault tolerance is a important factor in the case of aviation and nuclear plant. This paper presents design of reliable adaptive filter with fault tolerance. Generally, redundancy is used for reliability. In this case it needs computing or circuit for voting mechanism or computing for fault detection or switching part. But this presented Filter is not in need of computing for voting mechanism, or fault detection. Therefore it has simple computing, and practicality for application. And in this paper, reliability of adaptive filter is analyzed. The effectiveness of the proposed adaptive filter is demonstrated to the case studies of plant identifier and noise cancellation by using DSP.

  • PDF

Design and Implementation of Adaptive Fault-Tolerant Management System over Grid (그리드 환경의 적응형 오류 극복 관리 시스템 설계 및 구현)

  • Kim, Eun-Kyung;Kim, Jeu-Young;Kim, Yoon-Hee
    • The KIPS Transactions:PartA
    • /
    • v.15A no.3
    • /
    • pp.151-154
    • /
    • 2008
  • A middleware in grid computing environment is required to support seamless on-demand services over diverse resource situations in order to meet various user requirements [1]. Since grid computing applications need situation-aware middleware services in this environment. In this paper, we propose a semantic middleware architecture to support dynamic software component reconfiguration based fault and service ontology to provide fault-tolerance in a grid computing environment. Our middleware includes autonomic management to detect faults, analyze causes of them, and plan semantically meaningful strategies to recover from the failure using pre-defined fault and service ontology trees. We implemented a referenced prototype, Web-service based Application Execution Environment(Wapee), as a proof-of-concept, and showed the efficiency in runtime recovery.

A Fault Tolerance Mechanism with Dynamic Detection Period in Multiple Gigabit Server NICs (다중 Gigabit Server NICs에서 동적 검출 주기를 적용한 결함 허용 메커니즘)

  • 이진영;이시진
    • Journal of Internet Computing and Services
    • /
    • v.3 no.5
    • /
    • pp.31-39
    • /
    • 2002
  • A rapid growth of internet and sudden increase of multimedia data demands for high-speed transfer media and if optimizec usage from the interface system. To achieve this level of network bandwidth, multiple NICs for support of high-speed network bandwidth have been developed and studied. Furthermore, the use of multiple NICs can provide high-speed LAN environment without large network environment modification, supports backward compatibility of current system and reduce overhead. However. if system failure is caused by SPOF(Single Point of Failure) fault of large-capacity multiple NICs, incredible loss will be met because it services large capacity of multimedia data, Therefore, to prevent loss coming from faults, we describe 'Fault tolerance of multiple NICs', which use the fault prevention mechanism. Considering inefficiency of availability and serviceability that is occurred with existing TMR, Primary-Standby approach and Watchdog time mechanism, we propose and design the efficient fault tolerance mechanism, which minimize down time as changing of detection period dynamically. Consequently, the fault tolerance mechanism proposed for reducing overhead time when the fault is occurred, should minimize system downtime overall.

  • PDF

A Verification of Replicated Operation In P2P Computing (P2P 컴퓨팅에서 중복 수행 결과의 정확성 검증 기법)

  • Park, Chan Yeol
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.3
    • /
    • pp.35-43
    • /
    • 2004
  • Internet-based P2P computing with independent machines suffers from frequent disconnections and security threats caused by leaving, failure, network diversity, or anonymity of participated machines. Replication schemes of shared resources are used for solving these issues in many studies and implementations. We propose an operational replication scheme in P2P computing to share computing resources, and the scheme verifies the correctness of operation against faults and security threats. This verifications are carried out periodically on replicated and dependent working units without global message exchanges over the whole system. The verified working units are treated as checkpoints, and thus they could be put to practical use for fault-tolerance with rollback recovery.

  • PDF

A Method for Improving Interface Fault Tolerance in the Embedded Software (임베디드 소프트웨어의 인터페이스 결함허용성 향상 기법)

  • Choi, In Hwa;Paik, Jong Ho;Hwang, Jun
    • Journal of Internet Computing and Services
    • /
    • v.14 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • Generally, there can be a interface discrepancy between the legacy hardware and the new software in combining new software component with reused hardware components in the embedded system. This kind of the interface discrepancy may cause various types of faults and also result in declining interface fault tolerance. In this paper we propose a method to improve interface fault tolerance. First of all, the new interface discrepancy fault type which has not been dealt with before is to be defined and next the testing method for generating test paths is proposed by considering the new defined interface discrepancy fault type in this paper. Several tests show that the proposed method detects more fatal faults about 7.9% in comparison with the existing testing method for commercial broadcasting receiver. Since the proposed method can provide software developers with test paths to be available earlier on the software development cycle, in addition, software developers can regard on interface discrepancy fault in advance. Consequently, more efficient test planning can be established to improve the interface fault tolerance.

40-TFLOPS artificial intelligence processor with function-safe programmable many-cores for ISO26262 ASIL-D

  • Han, Jinho;Choi, Minseok;Kwon, Youngsu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.468-479
    • /
    • 2020
  • The proposed AI processor architecture has high throughput for accelerating the neural network and reduces the external memory bandwidth required for processing the neural network. For achieving high throughput, the proposed super thread core (STC) includes 128 × 128 nano cores operating at the clock frequency of 1.2 GHz. The function-safe architecture is proposed for a fault-tolerance system such as an electronics system for autonomous cars. The general-purpose processor (GPP) core is integrated with STC for controlling the STC and processing the AI algorithm. It has a self-recovering cache and dynamic lockstep function. The function-safe design has proved the fault performance has ASIL D of ISO26262 standard fault tolerance levels. Therefore, the entire AI processor is fabricated via the 28-nm CMOS process as a prototype chip. Its peak computing performance is 40 TFLOPS at 1.2 GHz with the supply voltage of 1.1 V. The measured energy efficiency is 1.3 TOPS/W. A GPP for control with a function-safe design can have ISO26262 ASIL-D with the single-point fault-tolerance rate of 99.64%.

An Efficient Mutual Exclusion Protocol in a Mobile Computing Environment

  • Park, Sung-Hoon
    • International Journal of Contents
    • /
    • v.2 no.4
    • /
    • pp.25-30
    • /
    • 2006
  • The mutual exclusion (MX) paradigm can be used as a building block in many practical problems such as group communication, atomic commitment and replicated data management where the exclusive use of an object might be useful. The problem has been widely studied in the research community since one reason for this wide interest is that many distributed protocols need a mutual exclusion protocol. However, despite its usefulness, to our knowledge there is no work that has been devoted to this problem in a mobile computing environment. In this paper, we describe a solution to the mutual exclusion problem from mobile computing systems. This solution is based on the token-based mutual exclusion algorithm.

  • PDF

Determination of the profit-maximizing configuration for the modular cell manufacturing system using stochastic process (실시간 고장포용 생산시스템의 적정 성능 유지를 위한 최적 설계 기법에 관한 연구)

  • Park, Seung-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.614-621
    • /
    • 1999
  • In this paper, the analytical appproaches are presented for jointly determining the profit-miximizing configuration of the fault-tolerance real time modular cell manufacturing system. The transient(time-dependent) analysis of Markovian models is firstly applied to modular cell manufacturing system from a performability viewpoint whose modeling advantage lies in its ability to express the performance that truly matters - the user's perception of it - as well as various performance measures compositely in the context of application. The modular cells are modeled with hybrid decomposition method and then availability measures such as instantaneous availability, interval availability, expected cumulative operational time are evaluated as special cases of performability. In addition to this evaluation, sensitivity analysis of the entire manufacturing system as well as each machining cell is performed, from which the time of a major repair policy and the optimal configuration among the alternative configurations of the system can be determined. Secondly, the recovery policies from the machine failures by computing the minimal number of redundant machines and also from the task failures by computing the minimum number of tasks equipped with detection schemes of task failure and reworked upon failure detection, to meet the timing requirements are optimized. Some numerical examples are presented to demonstrate the effectiveness of the work.

  • PDF

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.