• Title, Summary, Keyword: Feasible Domain Sampling

Search Result 4, Processing Time 0.031 seconds

Sequential Feasible Domain Sampling of Kriging Metamodel by Using Penalty Function (벌칙함수 기반 크리깅메타모델의 순차적 유용영역 실험계획)

  • Lee Tae-Hee;Seong Jun-Yeob;Jung Jae-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6
    • /
    • pp.691-697
    • /
    • 2006
  • Metamodel, model of model, has been widely used to improve an efficiency of optimization process in engineering fields. However, global metamodels of constraints in a constrained optimization problem are required good accuracy around neighborhood of optimum point. To satisfy this requirement, more sampling points must be located around the boundary and inside of feasible region. Therefore, a new sampling strategy that is capable of identifying feasible domain should be applied to select sampling points for metamodels of constraints. In this research, we suggeste sequential feasible domain sampling that can locate sampling points likely within feasible domain by using penalty function method. To validate the excellence of feasible domain sampling, we compare the optimum results from the proposed method with those form conventional global space-filling sampling for a variety of optimization problems. The advantages of the feasible domain sampling are discussed further.

Feasible Scaled Region of Teleoperation Based on the Unconditional Stability

  • Hwang, Dal-Yeon;Blake Hannaford;Park, Hyoukryeol
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 2002
  • Applications of scaled telemanipulation into micro or nano world that shows many different features from directly human interfaced tools have been increased continuously. Here, we have to consider many aspects of scaling such as force, position, and impedance. For instance, what will be the possible range of force and position scaling with a specific level of performance and stability\ulcorner This knowledge of feasible staling region can be critical to human operator safety. In this paper, we show the upper bound of the product of force and position scaling and simulation results of 1DOF scaled system by using the Llewellyn's unconditional stability in continuous and discrete domain showing the effect of sampling rate.

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.

Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman Filter

  • Chatzi, Eleni N.;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.295-328
    • /
    • 2015
  • In recent years the monitoring of structural behavior through acquisition of vibrational data has become common practice. In addition, recent advances in sensor development have made the collection of diverse dynamic information feasible. Other than the commonly collected acceleration information, Global Position System (GPS) receivers and non-contact, optical techniques have also allowed for the synchronous collection of highly accurate displacement data. The fusion of this heterogeneous information is crucial for the successful monitoring and control of structural systems especially when aiming at real-time estimation. This task is not a straightforward one as measurements are inevitably corrupted with some percentage of noise, often leading to imprecise estimation. Quite commonly, the presence of noise in acceleration signals results in drifting estimates of displacement states, as a result of numerical integration. In this study, a new approach based on a time domain identification method, namely the Unscented Kalman Filter (UKF), is proposed for correcting the "drift effect" in displacement or rotation estimates in an online manner, i.e., on the fly as data is attained. The method relies on the introduction of artificial white noise (WN) observations into the filter equations, which is shown to achieve an online correction of the drift issue, thus yielding highly accurate motion data. The proposed approach is demonstrated for two cases; firstly, the illustrative example of a single degree of freedom linear oscillator is examined, where availability of acceleration measurements is exclusively assumed. Secondly, a field inspired implementation is presented for the torsional identification of a tall tower structure, where acceleration measurements are obtained at a high sampling rate and non-collocated GPS displacement measurements are assumed available at a lower sampling rate. A multi-rate Kalman Filter is incorporated into the analysis in order to successfully fuse data sampled at different rates.