• Title, Summary, Keyword: Fire Spreading

Search Result 103, Processing Time 0.034 seconds

Simulating the Response of a 10-Storey Steel-Framed Building under Spreading Multi-Compartment Fires

  • Jiang, Jian;Zhang, Chao
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.389-396
    • /
    • 2018
  • This paper presents a numerical investigation on the structural response of a multi-story building subjected to spreading multi-compartment fires. A recently proposed simple fire model has been used to simulate two spreading multi-compartment fire scenarios in a 10-story steel-framed office building. By assuming simple temperature rising and distribution profiles in the fire exposed structural components (steel beams, steel column and concrete slabs), finite element simulations using a three-dimensional structural model has been carried out to study the failure behavior of the whole structure in two multi-compartment fire conditions and also in a standard fire condition. The structure survived the standard fire but failed in the multi-compartment fire. Whilst more accurate fire models and heat transfer models are needed to better predict the behaviors of structures in realistic fires, the current study based on very simple models has demonstrated the importance and necessity of considering spreadingmulti-compartment fires in fire resistance design of multi-story buildings.

A FORECASTING METHOD FOR FOREST FIRES BASED ON THE TOPOGRAPHICAL CLASSIFICATION SYSTEM AND SPREADING SPEED OF FIRE

  • Koizumi, Toshio
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • /
    • pp.311-318
    • /
    • 1997
  • On April 27,1993, a forest fire occurred in Morito-area, Manba-city, Gunma-prefecture Japan. Under the prevailing strong winds, the fire spread and extended to the largest scale ever in Gunma-prefecture. The author chartered a helicopter on May 5, one week after the fire was extinguished, and took aerial photos of tile damaged area, and investigated the condition. of the fire through field survey and data collection. The burnt area extended. over about 100 hectares, and the damage amounted to about 190 million yen (about two million dollar). The fire occurred at a steep mountainous area and under strong winds, therefore, md and topography strongly facilitated the spreading, It is the purpose of this paper to report a damage investigation of the fire and to develop the forecasting method of forest fires based on the topographical analysis and spreading speed of fire. In the first place, I analyze the topographical structure of the regions which became the bject of this study with some topographical factors, and construct a land form classification ap. Secondly, I decide the dangerous condition of each region in the land form classification map according to the direction of the wind and spreading speed of f'kre. In the present paper, I try to forecast forest fires in Morito area, and the basic results for the forecasting method of forest fires were obtained with the topographical classification system and spreading speed of fire.

  • PDF

A Study on the Fire Characteristics of Aluminum Composite Panel by Large Scale Calorimeter (라지스케일 칼로리미터에 의한 알루미늄 복합패널 외장재의 연소특성에 관한 연구)

  • Yun, Jung-Eun;Min, Se-Hong;Kim, Mi-Suck;Choi, Sung-Bok
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • In this research, exterior material combustion experiment was really tested to evaluate fire risks of aluminium complex panel which is used a lot for building exterior material. As a result, We saw fast fire spreading of aluminium complex panel. The reason is polyethylene in aluminum complex panel combust spreading fast fire flame vertically. In this test, the highest heat release rate of aluminum complex panel was 1,144 kW and surface temperature which is measured by thermocouple went up to more than $903.3^{\circ}C$, that temperature is quite a higher than $660^{\circ}C$ which is aluminum melting temperature. So, fire of aluminum complex panel can be evaluated to give us severe damage both by fast fire spreading vertically and by fire spreading through openings internally. These results from real experiment will be able to use to predict fire spreading of aluminum complex panel by comparing to modeling materialization of aluminum complex panel in the future.

An experimental Investigation on Flame spreading over liquid fuel surface (액체 연료 표면에서의 화염확장기구에 관한 실험적 연구)

  • 김한석
    • Fire Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.5-10
    • /
    • 1993
  • Flame spreading over liquid fuel surface has been investigated using thermocouple and schlieren photograph. Without forced convection, it was clearly found that the flame spreading is mainly controlled by surface flow which is maybe generated by change of surface tension. Furthermore, the radiative heat transfer is dominant over a conductive heat transfer in kerosene. But the latter was found more influential than the former in diesel. Oscillation of flame spreading was found. It maybe cause of surface flow.

  • PDF

Fire Extinguishing Capability of an Automatic Spreading Fire Extinguisher in Accordance with Horizontal Distance from a Fire Source (자동확산소화장치의 이격거리에 따른 소화성능평가연구)

  • Kwark, Ji-Hyun;Kim, Dong-Suk;Ku, Jae-Hyun
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.38-43
    • /
    • 2013
  • An automatic spreading fire extinguisher usually installed in a closed area like a boiler room, a laundry store or a restaurant's kitchen room is one of the fire protection equipments. This extinguisher automatically discharges dry powder, extinguishing fire. As this extinguisher has the extinguishing capability applicable to the nominal protection area, objects outside the area cannot be properly extinguished. However only its number is being requested according to the floor area in the related laws, and the extinguishing capability depends on the distance from a fire source. In this study we tried to investigate the extinguishing capability of the automatic spreading fire extinguisher in accordance with horizontal separation distance from a fire source. It appeared that the maximum horizontal separation distance was about 30 cm for both class A and B fire to be certainly extinguished.

Trial Construction for the Prevention of Fire Spread in Piloti Building (필로티건축물의 화재확산방지를 위한 시범시공)

  • Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • /
    • pp.87-88
    • /
    • 2019
  • In case of Korea, The Large-scale fire is consistently being such as 2015 Uijeongbu Fire, 2017 Jecheon Fire, 2018 Sejong Hospital Fire. Such a fire has a problem that the fire is spreading upper due to external flame spread. As a countermeasure the fire safety, the study about axial temperature prediction of external flame spread is consistently doing. But in korea, Vertical spandrel is specified as 40cm, and improvement is urgently needed. In this study, a repair material was selected to prevent the fire from spreading to a building where a flammable exterior material was installed and then pilot construction was carried out. Also, fire safety measures for buildings constructed with flammable exterior materials were examined.

  • PDF

A Study on Fire Spreading Prediction Program by Flow Field Analysis (유동장(流動場) 해석(解析)을 통한 산불확산예측(擴散豫測) 프로그램의 개발(開發))

  • Kim, Eng-Sik;Lee, Si-Young;Lim, Hoe-Jie;Kim, Hong;Song, Jong-Hun;Kim, Soo-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.528-534
    • /
    • 1998
  • There are many parameters in prediction of forest fire spread. Among others wind and slope factors are considered to be the important parameters in spread of forest fire. Generally, all the inclined planes with same slopes can not have the same wind velocity in complex mountain area. But this effect has been disregarded in complex geometry. In this paper, wind values which have velocity and direction is calculated by applying computational fluid dynamics to the forest geometry. These results are applied for forest fire spreading algorithm with experimental Korean ROS(Rate Of Spread). Finally, the comparison between the simulation and the real forest fire has correspondence about 90%.

  • PDF

Sensitivity Analysis on Ecological Factors Affecting Forest Fire Spreading: Simulation Study (산불확산에 영향을 미치는 생태학적 요소들간의 민감도 분석: 시뮬레이션 연구)

  • Song, Hark-Soo;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • Forest fires are expected to increase in severity and frequency under global climate change and thus better understanding of fire dynamics is critical for mitigation and adaptation. Researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed various simulation models to reproduce forest fire spread dynamics. However, these models have limitations in the fire spreading because of the complicated factors such as fuel types, wind, and moisture. In this study, we suggested a simple model considering the wind effect and two different fuel types. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space with a density ranging from 0.0 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by wind and tree density. The statistical analysis showed that the total tree density had greatest effect on the forest fire spreading and wind had the next greatest effect. The density of the susceptible tree was relatively lower factor affecting the forest fire. We believe that our model can be a useful tool to explore forest fire spreading patterns.

Fire Hazard Analysis and Performance Based Fire safety Design for the Clean Room in Semiconductor Factory (반도체공장 Clean Room에 대한 화재요인 분석 및 성능위주 화재안전설계)

  • Han, Su-Jin;Kang, Kyung-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • /
    • pp.325-336
    • /
    • 2006
  • This research analyzes clean room major fire prevention standard of clean Room (FM, IRI, and NFPA Code), the structure of Performance-Based Fire Safety Design (PBD) applied the korean fire industry situation. Performance-Based Fire Safety can operate effectively the performance of fire protection equipment & building design, so the fitness of fire safety system can be embodied by operating this. moreover, cost to be consume fire safety of real building can reduce and Performance-Based Fire Safety is considered to important technique in fire protection field. A fire in a clean room may cause a serious loss by spreading smoke particles. We will be investigated by using a computational fluid dynamics, for loss prevention by smoke spreading from one fire area to another for clean room and compared the Performance-Based Fire Safety Design with the prescriptive code design. The methodology of fire safety performance-based fire safety design and guarantee of many kinds design skill of fire system and developing design procedure will be very serious one in order to improve efficiency of domestic system. Therefore, This research will be contributing to secure safety of clean room and to set up the performance-based fire safety design in Korea by regulation for the performance-based fire safety design effectively.

  • PDF

Fire Hazard Analysis and Performance Based Fire safety Design for the Clean Room in Semiconductor factory(1) (반도체공장 Clean Room에 대한 화재요인 분석 및 성능위주 화재안전설계(1))

  • Han, Su-Jin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management and Science
    • /
    • v.8 no.5
    • /
    • pp.211-229
    • /
    • 2006
  • This research analyzes clean room major fire prevention standard of clean Room(FM, IRI, and NFPA Code), the structure of Performance-Based Fire Safety Design(PBD) applied the korean fire industry situation. Performance-Based Fire Safety can operate effectively the performance of fire protection equipment & building design, so the fitness of fire safety system can be embodied by operating this. moreover, cost to be consume fire safety of real building can reduce and Performance-Based Fire Safety is considered to important technique in fire protection field. A fire in a clean room may cause a serious loss by spreading smoke particles. We will be investigated by using a computational fluid dynamics, for loss prevention by smoke spreading from one fire area to another for clean room and compared the Performance-Based Fire Safety Design with the prescriptive code design. The methodology of fire safety performance-based fire safety design and guarantee of many kinds design skill of fire system and developing design procedure will be very serious one in order to improve efficiency of domestic system. Therefore, This research will be contributing to secure safety of clean room and to set up the performance-based fire safety design in Korea by regulation for the performance-based fire safety design effectively.