• Title, Summary, Keyword: Forecast

Search Result 2,865, Processing Time 0.054 seconds

Forecast Sensitivity Analysis of An Asian Dust Event occurred on 6-8 May 2007 in Korea (2007년 5월 6-8일 황사 현상의 예측 민감도 분석)

  • Kim, Hyun Mee;Kay, Jun Kyung
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.399-414
    • /
    • 2010
  • Sand and dust storm in East Asia, so called Asian dust, is a seasonal meteorological phenomenon. Mostly in spring, dust particles blown into atmosphere in the arid area over northern China desert and Manchuria are transported to East Asia by prevailing flows. An Asian dust event occurred on 6-8 May 2007 is chosen to investigate how sensitive the Asian dust transport forecast to the initial condition uncertainties and to interpret the characteristics of sensitivity structures from the viewpoint of dynamics and predictability. To investigate the forecast sensitivities to the initial condition, adjoint sensitivities that calculate gradient of the forecast aspect (i.e., response function) with respect to the initial condition are used. The forecast aspects relevant to Asian dust transports are dry energy forecast error and lower tropospheric pressure forecast error. The results show that the sensitive regions for the dry energy forecast error and the lower tropospheric pressure forecast error are initially located in the vicinity of the trough and then propagate eastward as the surface low system moves eastward. The vertical structures of the adjoint sensitivities for the dry energy forecast error are upshear tilted structures, which are typical adjoint sensitivity structures for extratropical cyclones. Energy distribution of singular vectors also show very similar structures with the adjoint sensitivities for the dry energy forecast error. The adjoint sensitivities of the lower tropospheric pressure forecast error with respect to the relative vorticity show that the accurate forecast of the trough (or relative vorticity) location and intensity is essential to have better forecasts of the Asian dust event. Forecast error for the atmospheric circulation during the dust event is reduced 62.8% by extracting properly weighted adjoint sensitivity perturbations from the initial state. Linearity assumption holds generally well for this case. Dynamics of the Asian dust transport is closely associated with predictability of it, and the improvement in the overall forecast by the adjoint sensitivity perturbations implies that adjoint sensitivities would be beneficial in improving the forecast of Asian dust events.

A Study on Forecast Accuracies by the Localized Land Forecast Areas over South Korea (육상 국지 예보 구역의 예보 정확도에 관한 연구)

  • Park, Chang-Yong;Choi, Young-Eun;Kim, Seung-Bae
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • This study aimed to evaluate weather forecast accuracies of minimum temperature, maximum temperature, precipitation and sky cover by the localized land forecast areas over South Korea Average forecast accuracy score of precipitation was the lowest while that of sky cover was the highest during the study period Overall forecast accuracy scores for Gangwon-do was the lowest while those for Gyeongsangnam-do and Gyeongsangbuk-do were higher than other areas. The frequencies of perfect forecast(eight points) by seasons, were the highest during winter and the lowest during summer. pressure pattern analyses for days when forecast accuracy scores were poor, showed that precipitation forecast accuracy scores were lower due to the movement of the stationary fronts during summers. When continental polar air masses expanded, forecast accuracy of temperature became greatly lower during autumns and winters As the migratory anticyclone pattern rapidly moved, forecast accuracy became lower during springs and autumns. Forecast accuracies were compared by wind directions at 850hPa for the Young-dong region where forecast accuracy was the lowest. Forecast accuracy scores on minimum and maximum temperatures were low when winds were westerlies and forecast accuracy scores of precipitation were low when winds were easterlies.

Cloud Forecast using Numerical Weather Prediction (수치 예보를 이용한 구름 예보)

  • Kim, Young-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.57-62
    • /
    • 2007
  • In this paper, we attempted to produce the cloud forecast that use the numerical weather prediction(NWP) MM5 for objective cloud forecast. We presented two methods for cloud forecast. One of them used total cloud mixing ratio registered to sum(synthesis) of cloud-water and cloud-ice grain mixing ratio those are variables related to cloud among NWP result data and the other method that used relative humidity. An experiment was carried out period from 23th to 24th July 2004. According to the sequence of comparing the derived cloud forecast data with the observed value, it was indicated that both of those have a practical use possibility as cloud forecast method. Specially in this Case study, cloud forecast method that use total cloud mixing ratio indicated good forecast availability to forecast of the low level clouds as well as middle and high level clouds.

  • PDF

Evaluation of PNU CGCM Ensemble Forecast System for Boreal Winter Temperature over South Korea (PNU CGCM 앙상블 예보 시스템의 겨울철 남한 기온 예측 성능 평가)

  • Ahn, Joong-Bae;Lee, Joonlee;Jo, Sera
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.509-520
    • /
    • 2018
  • The performance of the newly designed Pusan National University Coupled General Circulation Model (PNU CGCM) Ensemble Forecast System which produce 40 ensemble members for 12-month lead prediction is evaluated and analyzed in terms of boreal winter temperature over South Korea (S. Korea). The influence of ensemble size on prediction skill is examined with 40 ensemble members and the result shows that spreads of predictability are larger when the size of ensemble member is smaller. Moreover, it is suggested that more than 20 ensemble members are required for better prediction of statistically significant inter-annual variability of wintertime temperature over S. Korea. As for the ensemble average (ENS), it shows superior forecast skill compared to each ensemble member and has significant temporal correlation with Automated Surface Observing System (ASOS) temperature at 99% confidence level. In addition to forecast skill for inter-annual variability of wintertime temperature over S. Korea, winter climatology around East Asia and synoptic characteristics of warm (above normal) and cold (below normal) winters are reasonably captured by PNU CGCM. For the categorical forecast with $3{\times}3$ contingency table, the deterministic forecast generally shows better performance than probabilistic forecast except for warm winter (hit rate of probabilistic forecast: 71%). It is also found that, in case of concentrated distribution of 40 ensemble members to one category out of the three, the probabilistic forecast tends to have relatively high predictability. Meanwhile, in the case when the ensemble members distribute evenly throughout the categories, the predictability becomes lower in the probabilistic forecast.

Short-Term Load Forecast for Summer Special Light-Load Period (하계 특수경부하기간의 단기 전력수요예측)

  • Park, Jeong-Do;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.482-488
    • /
    • 2013
  • Load forecasting is essential to the economical and the stable power system operations. In general, the forecasting days can be classified into weekdays, weekends, special days and special light-load periods in short-term load forecast. Special light-load periods are the consecutive holidays such as Lunar New Years holidays, Korean Thanksgiving holidays and summer special light-load period. For the weekdays and the weekends forecast, the conventional methods based on the statistics are mainly used and show excellent results for the most part. The forecast algorithms for special days yield good results also but its forecast error is relatively high than the results of the weekdays and the weekends forecast methods. For summer special light-load period, none of the previous studies have been performed ever before so if the conventional methods are applied to this period, forecasting errors of the conventional methods are considerably high. Therefore, short-term load forecast for summer special light-load period have mainly relied on the experience of power system operation experts. In this study, the trends of load profiles during summer special light-load period are classified into three patterns and new forecast algorithms for each pattern are suggested. The proposed method was tested with the last ten years' summer special light-load periods. The simulation results show the excellent average forecast error near 2%.

Short-Term Power Demand Forecast using Exclusion of Week Periodicity (주 주기성의 제거를 이용한 단기전력수요예측)

  • Koh, Hee-Seog;Lee, Chung-Sik;Lee, Chul-Woo;Chil, Jong-Kyu
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1177-1179
    • /
    • 1997
  • In this paper, short-term power demand forecast using exclusion of week periodicity presented. Week periodicity excluded from weekday change ratio. Forecast term of five and multiple regression model of the three form was composed. Forecast result was good. Therefore, It Could be the power demand forecast of special day(weekend). This method may contribute improvement of forecast accuracy.

  • PDF

Optimal Operating Method of PV+ Storage System Using the Peak-Shaving in Micro-Grid System (Micro-Grid 시스템에서 Peak-Shaving을 이용한 PV+ 시스템의 최적 운영 방법)

  • Lee, Gi-hwan;Lee, Kang-won
    • Journal of the Society of Korea Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.1-13
    • /
    • 2020
  • There are several methods of peak-shaving, which reduces grid power demand, electricity bought from electricity utility, through lowering "demand spike" during On-Peak period. An optimization method using linear programming is proposed, which can be used to perform peak-shaving of grid power demand for grid-connected PV+ system. Proposed peak shaving method is based on the forecast data for electricity load and photovoltaic power generation. Results from proposed method are compared with those from On-Off and Real Time methods which do not need forecast data. The results also compared to those from ideal case, an optimization method which use measured data for forecast data, that is, error-free forecast data. To see the effects of forecast error 36 error scenarios are developed, which consider error types of forecast, nMAE (normalizes Mean Absolute Error) for photovoltaic power forecast and MAPE (Mean Absolute Percentage Error) for load demand forecast. And the effects of forecast error are investigated including critical error scenarios which provide worse results compared to those of other scenarios. It is shown that proposed peak shaving method are much better than On-Off and Real Time methods under almost all the scenario of forecast error. And it is also shown that the results from our method are not so bad compared to the ideal case using error-free forecast.

Evaluation of a Solar Flare Forecast Model with Value Score

  • Park, Jongyeob;Moon, Yong-Jae;Lee, Kangjin;Lee, Jaejin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.80.1-80.1
    • /
    • 2016
  • There are probabilistic forecast models for solar flare occurrence, which can be evaluated by various skill scores (e.g. accuracy, critical success index, heidek skill score, and true skill score). Since these skill scores assume that two types of forecast errors (i.e. false alarm and miss) are equal or constant, which does not take into account different situations of users, they may be unrealistic. In this study, we make an evaluation of a probabilistic flare forecast model [Lee et al., 2012] which use sunspot groups and its area changes as a proxy of flux emergence. We calculate daily solar flare probabilities from 2011 to 2014 using this model. The skill scores are computed through contingency tables as a function of forecast probability, which corresponds to the maximum skill score depending on flare class and type of a skill score. We use a value score with cost/loss ratio, relative importance between the two types of forecast errors. The forecast probability (y) is linearly changed with the cost/loss ratio (x) in the form of y=ax+b: a=0.88; b=0 (C), a=1.2; b=-0.05(M), a=1.29; b=-0.02(X). We find that the forecast model has an effective range of cost/loss ratio for each class flare: 0.536-0.853(C), 0.147-0.334(M), and 0.023-0.072(X). We expect that this study would provide a guideline to determine the probability threshold and the cost/loss ratio for space weather forecast.

  • PDF