• Title, Summary, Keyword: Functionally Graded Material

Search Result 587, Processing Time 0.043 seconds

Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material

  • Nguyen, Dinh-Kien;Gan, Buntara S.;Trinh, Thanh-Huong
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.727-743
    • /
    • 2014
  • Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material (FGM) by using the finite element method is presented. The material property of the structures is assumed to be graded in the thickness direction by a power law distribution. A nonlinear beam element based on Bernoulli beam theory, taking the shift of the neutral axis position into account, is formulated in the context of the co-rotational formulation. The nonlinear equilibrium equations are solved by using the incremental/iterative procedure in a combination with the arc-length control method. Numerical examples show that the formulated element is capable to give accurate results by using just several elements. The influence of the material inhomogeneity in the geometrically nonlinear behavior of the FGM beam and frame structures is examined and highlighted.

Forced vibration analysis of functionally graded sandwich deep beams

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • This paper presents forced vibration analysis of sandwich deep beams made of functionally graded material (FGM) in face layers and a porous material in core layer. The FGM sandwich deep beam is subjected to a harmonic dynamic load. The FGM in the face layer is graded though the layer thickness. In order to get more realistic result for the deep beam problem, the plane solid continua is used in the modeling of The FGM sandwich deep beam. The equations of the problem are derived based the Hamilton procedure and solved by using the finite element method. The novelty in this paper is to investigate the dynamic responses of sandwich deep beams made of FGM and porous material by using the plane solid continua. In the numerical results, the effects of different material distributions, porosity coefficient, geometric and dynamic parameters on the dynamic responses of the FGM sandwich deep beam are investigated and discussed.

Influence of sine material gradients on delamination in multilayered beams

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • The present paper deals with delamination fracture analyses of the multilayered functionally graded non-linear elastic Symmetric Split Beam (SSB) configurations. The material is functionally graded in both width and height directions in each layer. It is assumed that the material properties are distributed non-symmetrically with respect to the centroidal axes of the beam cross-section. Sine laws are used to describe the continuous variation of the material properties in the cross-sections of the layers. The delamination fracture is analyzed in terms of the strain energy release rate by considering the balance of the energy. A comparison with the J-integral is performed for verification. The solution derived is used for parametric analyses of the delamination fracture behavior of the multilayered functionally graded SSB in order to evaluate the effects of the sine gradients of the three material properties in the width and height directions of the layers and the location of the crack along the beam width on the strain energy release rate. The solution obtained is valid for two-dimensional functionally graded non-linear elastic SSB configurations which are made of an arbitrary number of lengthwise vertical layers. A delamination crack is located arbitrary between layers. Thus, the two crack arms have different widths. Besides, the layers have individual widths and material properties.

Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method

  • Khayat, Majid;Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir;Baghlani, Abdolhossein
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.735-748
    • /
    • 2018
  • In this study, the semi-analytical finite strip method is adopted to examine the free vibration of cylindrical shells made up of functionally graded material. The properties of functionally graded shells are assumed to be temperature-dependent and vary continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of ceramic and metal. The material properties of the shells and stiffeners are assumed to be continuously graded in the thickness direction. Theoretical formulations based on the smeared stiffeners technique and the classical shell theory with first-order shear deformation theory which accounts for through thickness shear flexibility are employed. The finite strip method is applied to five different shell theories, namely, Donnell, Reissner, Sanders, Novozhilov, and Teng. The approximate procedure is compared favorably with three-dimensional finite elements. Finally, a detailed numerical study is carried out to bring out the effects of power-law index of the functional graded material, stiffeners, and geometry of the shells on the difference between various shell theories. Finally, the importance of choosing the shell theory in simulating the functionally graded cylindrical shells is addressed.

A novel four variable refined plate theory for wave propagation in functionally graded material plates

  • Fourn, Hocine;Atmane, Hassen Ait;Bourada, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.109-122
    • /
    • 2018
  • In This work an analysis of the propagation of waves of functionally graduated plates is presented by using a high order hyperbolic (HSDT) shear deformation theory. This theory has only four variables, which is less than the theory of first order shear deformation (FSDT). Therefore, a shear correction coefficient is not required. Unlike other conventional shear deformation theories, the present work includes a new field of displacement which introduces indeterminate integral variables. The properties of materials are supposed classified in the direction of the thickness according to two simple distributions of a power law in terms of volume fractions of constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model

  • Kettaf, Fatima Zohra;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.399-423
    • /
    • 2013
  • In the present study, the thermal buckling behavior of functionally graded sandwich plates is studied using a new hyperbolic displacement model. Unlike any other theory, the theory is variationally consistent and gives four governing equations. Number of unknown functions involved in displacement field is only four, as against five in case of other shear deformation theories. This present model takes into account the parabolic distribution of transverse shear stresses and satisfies the condition of zero shear stresses on the top and bottom surfaces without using shear correction factor. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates.

Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory

  • Bakhti, K.;Kaci, A.;Bousahla, A.A.;Houari, M.S.A.;Tounsi, A.;Adda Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.335-347
    • /
    • 2013
  • In this paper, the nonlinear cylindrical bending behavior of functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes (SWCNTs) is studied using an efficient and simple refined theory. This theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The fundamental equations for functionally graded nanocomposite plates are obtained using the Von-Karman theory for large deflections and the solution is obtained by minimization of the total potential energy. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as comparators.

Bending analysis of softcore and hardcore functionally graded sandwich beams

  • Hadji, Lazreg;Safa, Abdelkader
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.481-492
    • /
    • 2020
  • A New hyperbolic shear deformation theory is developed for the bending analysis of softcore and hardcore functionally graded sandwich beams. This theory satisfies the equilibrium conditions at the top and bottom faces of the sandwich beam and does not require the shear correction factor. The governing equations are derived from the principle of virtual work. Sandwich beams have functionally graded skins and two types of homogenous core (softcore and hardcore). The material properties of functionally graded skins are graded through the thickness according to the power-law distribution. The Navier solution is used to obtain the closed form solutions for simply supported FGM sandwich beams. The accuracy and effectiveness of proposed theory are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the deflections, stresses, and sandwich beam type on the bending responses of functionally graded sandwich beams.

Elastic-plastic fracture of functionally graded circular shafts in torsion

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.299-318
    • /
    • 2016
  • Analytical investigations were performed of a longitudinal crack representing a cylindrical surface in circular shafts loaded in torsion with taking into account the non-linear material behavior. Both functionally graded and multilayered shafts were analyzed. It was assumed that the material is functionally graded in radial direction. The mechanical behavior of shafts was modeled by using non-linear constitutive relations between the shear stresses and shear strains. The fracture was studied in terms of the strain energy release rate. Within the framework of small strain approach, the strain energy release rate was derived in a function of the torsion moments in the cross-sections ahead and behind the crack front. The analytical approach developed was applied to study the fracture in a clamped circular shaft. In order to verify the solution derived, the strain energy release rate was determined also by considering the shaft complimentary strain energy. The effects were evaluated of material properties, crack location and material non-linearity on the fracture behavior. The results obtained can be applied for optimization of the shafts structure with respect to the fracture performance. It was shown that the approach developed in the present paper is very useful for studying the longitudinal fracture in circular shafts in torsion with considering the material non-linearity.

A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation

  • Benahmed, Abdelkarim;Houari, Mohammed Sid Ahmed;Benyoucef, Samir;Belakhdar, Khalil;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.9-34
    • /
    • 2017
  • In this work, an efficient and simple quasi-3D hyperbolic shear deformation theory is developed for bending and vibration analyses of functionally graded (FG) plates resting on two-parameter elastic foundation. The significant feature of this theory is that, in addition to including the thickness stretching effect, it deals with only 5 unknowns as the first order shear deformation theory (FSDT). The foundation is described by the Pasternak (two-parameter) model. The material properties of the plate are assumed to vary continuously in the thickness direction by a simple power law distribution in terms of the volume fractions of the constituents. Equations of motion for thick FG plates are obtained within the Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The numerical results are given in detail and compared with the existing works such as 3-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates resting on elastic foundation.