• Title, Summary, Keyword: Genome-wide Association

Search Result 244, Processing Time 0.039 seconds

A Short History of the Genome-Wide Association Study: Where We Were and Where We Are Going

  • Ikegawa, Shiro
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.220-225
    • /
    • 2012
  • Recent rapid advances in genetic research are ushering us into the genome sequence era, where an individual's genome information is utilized for clinical practice. The most spectacular results of the human genome study have been provided by genome-wide association studies (GWASs). This is a review of the history of GWASs as related to my work. Further efforts are necessary to make full use of its potential power to medicine.

Genome-Wide Association Study of Hepatitis in Korean Populations

  • Hong, Youngbok;Oh, Sejong
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.203-207
    • /
    • 2014
  • Hepatitis is a common and serious disease for the Korean population. It is caused by a virus, the A and B types of which are plentiful in Koreans. In this study, we tried to find genetic factors for hepatitis through genome-wide association studies. We took 368 cases and 1,500 controls from Anseong and Ansan cohort data. About 300,000 single-nucleotide polymorphisms and 20 epidemiological variables were analyzed. We did not find any meaningful significant single nucleotide polymorphisms, but we confirmed the influence of major epidemiological variables on hepatitis.

Genome-Wide Association Study of Metabolic Syndrome in Koreans

  • Jeong, Seok Won;Chung, Myungguen;Park, Soo-Jung;Cho, Seong Beom;Hong, Kyung-Won
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.187-194
    • /
    • 2014
  • Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (< $5{\times}10^{-8}$), 8 SNPs with genome-wide suggestive p-values ($5{\times}10^{-8}{\leq}$ p < $1{\times}10^{-5}$), and 2 SNPs of more functional variants with borderline p-values ($5{\times}10^{-5}{\leq}$ p < $1{\times}10^{-4}$). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies.

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.

Genome-Wide Analysis Reveals Four Novel Loci for Attention-Deficit Hyperactivity Disorder in Korean Youths

  • Kweon, Kukju;Shin, Eun-Soon;Park, Kee Jeong;Lee, Jong-Keuk;Joo, Yeonho;Kim, Hyo-Won
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.29 no.2
    • /
    • pp.62-72
    • /
    • 2018
  • Objectives: The molecular mechanisms underlying attention-deficit hyperactivity disorder (ADHD) remain unclear. Therefore, this study aimed to identify the genetic susceptibility loci for ADHD in Korean children with ADHD. We performed a case-control and a family-based genome-wide association study (GWAS), as well as genome-wide quantitative trait locus (QTL) analyses, for two symptom traits. Methods: A total of 135 subjects (71 cases and 64 controls), for the case-control analysis, and 54 subjects (27 probands and 27 unaffected siblings), for the family-based analysis, were included. Results: The genome-wide QTL analysis identified four single nucleotide polymorphisms (SNPs) (rs7684645 near APELA, rs12538843 near YAE1D1 and POU6F2, rs11074258 near MCTP2, and rs34396552 near CIDEA) that were significantly associated with the number of inattention symptoms in ADHD. These SNPs showed possible association with ADHD in the family-based GWAS, and with hyperactivity-impulsivity in genome-wide QTL analyses. Moreover, association signals in the family-based QTL analysis for the number of inattention symptoms were clustered near genes IL10, IL19, SCL5A9, and SKINTL. Conclusion: We have identified four QTLs with genome-wide significance and several promising candidates that could potentially be associated with ADHD (CXCR4, UPF1, SETD5, NALCN-AS1, ERC1, SOX2-OT, FGFR2, ANO4, and TBL1XR1). Further replication studies with larger sample sizes are needed.

Stories and Challenges of Genome Wide Association Studies in Livestock - A Review

  • Sharma, Aditi;Lee, Jun Seop;Dang, Chang Gwon;Sudrajad, Pita;Kim, Hyeong Cheol;Yeon, Seong Heum;Kang, Hee Seol;Lee, Seung-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1371-1379
    • /
    • 2015
  • Undoubtedly livestock is one of the major contributors to the economy of any country. The economic value of livestock includes meat, dairy products, fiber, fertilizer etc. Understanding and identifying the associations of quantitative trait loci (QTL) with the economically important traits is believed to substantially benefit the livestock industry. The past two decades have seen a flurry of interest in mapping the QTL associated with traits of economic importance on the genome. With the availability of single nucleotide polymorphism chip of various densities it is possible to identify regions, QTL and genes on the genome that explain the association and its effect on the phenotype under consideration. Remarkable advancement has been seen in genome wide association studies (GWAS) since its inception till the present day. In this review we describe the progress and challenges of GWAS in various livestock species.

Genome-Wide Association Study of Medication Adherence in Chronic Diseases in the Korean Population

  • Seo, Incheol;Suh, Seong-Il;Suh, Min-Ho;Baek, Won-Ki
    • Genomics & Informatics
    • /
    • v.12 no.3
    • /
    • pp.121-126
    • /
    • 2014
  • Medication adherence is generally defined as the extent of voluntary cooperation of a patient in taking medicine as prescribed. Adherence to long-term treatment with chronic disease is essential for reducing disease comorbidity and mortality. However, medication non-adherence in chronic disease averages 50%. This study was conducted a genome-wide association study to identify the genetic basis of medication adherence. A total of 235 medication non-adherents and 1,067 medication adherents with hypertension or diabetes were used from the Korean Association Resource project data according to the self-reported treatment status of each chronic disease, respectively. We identified four single nucleotide polymorphisms with suggestive genome-wide association. The most significant single nucleotide polymorphism was rs6978712 (chromosome 7, $p=4.87{\times}10^{-7}$), which is located proximal to the GCC1 gene, which was previously implicated in decision-making capability in drug abusers. Two suggestive single nucleotide polymorphisms were in strong linkage disequilibrium ($r^2$ > 0.8) with rs6978712. Thus, in the aspect of decision-making in adherence behavior, the association between medication adherence and three loci proximal to the GCC1 gene seems worthy of further research. However, to overcome a few limitations in this study, defining the standardized phenotype criteria for self-reported adherence should be performed before replicating association studies.

Genome-Wide SNP Calling Using Next Generation Sequencing Data in Tomato

  • Kim, Ji-Eun;Oh, Sang-Keun;Lee, Jeong-Hee;Lee, Bo-Mi;Jo, Sung-Hwan
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.36-42
    • /
    • 2014
  • The tomato (Solanum lycopersicum L.) is a model plant for genome research in Solanaceae, as well as for studying crop breeding. Genome-wide single nucleotide polymorphisms (SNPs) are a valuable resource in genetic research and breeding. However, to do discovery of genome-wide SNPs, most methods require expensive high-depth sequencing. Here, we describe a method for SNP calling using a modified version of SAMtools that improved its sensitivity. We analyzed 90 Gb of raw sequence data from next-generation sequencing of two resequencing and seven transcriptome data sets from several tomato accessions. Our study identified 4,812,432 non-redundant SNPs. Moreover, the workflow of SNP calling was improved by aligning the reference genome with its own raw data. Using this approach, 131,785 SNPs were discovered from transcriptome data of seven accessions. In addition, 4,680,647 SNPs were identified from the genome of S. pimpinellifolium, which are 60 times more than 71,637 of the PI212816 transcriptome. SNP distribution was compared between the whole genome and transcriptome of S. pimpinellifolium. Moreover, we surveyed the location of SNPs within genic and intergenic regions. Our results indicated that the sufficient genome-wide SNP markers and very sensitive SNP calling method allow for application of marker assisted breeding and genome-wide association studies.

Genome wide association study of fatty acid composition in Duroc swine

  • Viterbo, Vanessa S.;Lopez, Bryan Irvine M.;Kang, Hyunsung;Kim, Hoonseop;Song, Choul-won;Seo, Kang Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1127-1133
    • /
    • 2018
  • Objective: Genome wide association study was conducted to identify and validate candidate genes associated with fatty acid composition of pork. Methods: A total of 480 purebreed Duroc pigs were genotyped using IlluminaPorcine60k bead chips while the association test was implemented following genome-wide rapid association using Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. Results: A total of 25, 29, and 16 single nucleotide polymorphisms (SNPs) were significantly associated with stearic (18:0), oleic (18:1) and saturated fatty acids (SFA), respectively. Genome wide significant variants were located on the same region of swine chromosome 14 (SSC14) that spanned from 120 to 124 Mb. Top SNP ALGA008191 was located at 5 kb near the stearoyl-CoA desaturase (SCD) gene. This gene is directly involved in desaturation of stearic acid into oleic acid. General relationship of significant SNPs showed high linkage disequilibrium thus genome-wide signals was attributed to SCD gene. However, understanding the role of other genes like elongation of very long chain fatty acids-3 (ELOVL3) located on this chromosomal segment might help in further understanding of metabolism and biosynthesis of fatty acids. Conclusion: Overall, this study provides evidence that validates SCD gene as strong candidate gene associated with fatty acid composition in Duroc pigs. Moreover, this study confirms significant SNPs near ELOVL3 gene.

A Genome-wide Association Study of Copy Number Variation in Hematological Parameters in the Korean Population

  • Kim, Ka-Kyung;Cho, Yoon-Shin;Cho, Nam-H.;Shin, Chol;Kim, Jong-Won
    • Genomics & Informatics
    • /
    • v.8 no.3
    • /
    • pp.122-130
    • /
    • 2010
  • Abnormal hematological values are associated with various disorders including cancer and cardiovascular, metabolic, infectious, and immune diseases. We report the copy number variations (CNVs) in clinically relevant hematological parameters, including hemoglobin level, red and white blood cell counts, platelet counts, and red blood cell (RBC) volume. We describe CNVs in several loci associated with these hematological parameters in 8,842 samples from Korean population-based studies. The data that we evaluated included four RBC parameters, one platelet parameter, and one associated with total white blood cell (WBC) count, exceeding the genome-wide significance. We show that CNVs in hematological parameters are associated with some loci, different from previously associated loci reported in single nucleotide polymorphism (SNP) association studies.