• Title, Summary, Keyword: Grass Silage

Search Result 124, Processing Time 0.04 seconds

Feeding Value of Jambo Grass Silage and Mott Grass Silage for Lactating Nili Buffaloes

  • Touqir, N.A.;Khan, M. Ajmal;Sarwar, M.;Mahr-un-Nisa, Mahr-un-Nisa;Ali, C.S.;Lee, W.S.;Lee, H.J.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.523-528
    • /
    • 2007
  • This study was conducted to evaluate the feeding value of jambo grass (Sorghum $bicolour{\times}Sorghum$ sudanefe) silage and mott grass (Pennisetum purpureum) silage as a replacement of conventional fodder (jambo grass) in the diet of lactating Nili buffaloes (Bubalus bubalis). Thirty early-lactating ($45{\pm}4$ days), multi-parous Nili buffaloes, ten in each group, were allotted to three experimental diets. Jambo grass and mott grass were ensiled with molasses (at 2% of fodder DM) in two trench silos for 30 days. The control diet (JG) contained 75% jambo grass while the other two diets contained 75% jambo grass silage (JGS) and 75% mott grass silage (MGS). The remaining 25% DM in each diet was supplied by concentrates. Diets were mixed daily and fed twice a day ad libitum for 120 days. Dry matter intake (DMI) was higher with the JG diet compared with JGS and MGS diets. However, DMI as % body weight did not differ significantly in buffaloes fed either fodder or silage based diets. Crude protein (CP), digestible CP and NDF intakes were significantly higher on JG compared with silage-based diets. Apparent total tract digestibilities of DM, CP and NDF were similar in buffaloes fed JG, JGS and MGS diets. Milk yield (4% FCM) was similar in buffaloes fed JG and silage based diets. Fat, total solids, solid not fat, CP, true protein and non-protein nitrogen content of milk were similar in buffaloes fed fodder or silage based diets. The present results indicated that jambo grass and mott grass ensiled with 2% molasses for 30 days could safely replace the conventional fresh grass fodder (75% DM) in the diet of lactating Nili buffaloes without affecting their milk yield.

Comparative analysis of silage fermentation and in vitro digestibility of tropical grass prepared with Acremonium and Tricoderma species producing cellulases

  • Khota, Waroon;Pholsen, Suradej;Higgs, David;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1913-1922
    • /
    • 2018
  • Objective: To find out ways of improving fermentation quality of silage, the comparative analysis of fermentation characteristics and in vitro digestibility of tropical grasses silage applied with cellulases produced from Acremonium or Tricoderma species were studied in Thailand. Methods: Fresh and wilted Guinea grass and Napier grass silages were prepared with cellulases from Acremonium (AC) or Trichoderma (TC) at 0.0025%, 0.005%, and 0.01% on a fresh matter (FM), and their fermentation quality, chemical composition and in vitro digestibility were analyzed. Results: All silages of fresh Napier grass were good quality with lower pH, butyric acid, and ammonia nitrogen, but higher lactic acid content than wilted Napier grass and Guinea grass silage. Silages treated with AC 0.01% had the best result in terms of fermentation quality. They also had higher in vitro dry matter digestibility and in vitro organic matter digestibility at 6 and 48 h after incubation than other silages. Silages treated with lower levels at 0.005% or 0.0025% of AC and all levels of TC did not improve silage fermentation. Conclusion: The AC could improve silage fermentation and in vitro degradation of Guinea grass and Napier grass silages, and the suitable addition ration is 0.01% (73.5 U) of FM for tropical silage preparation.

NUTRITIVE VALUE OF NAPIER GRASS (PENNISETUM PURPUREUM SCHUM.) SILAGE ENSILED WITH MOLASSES BY GOATS

  • Yokota, H.;Okajima, T.;Ohshima, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 1992
  • Napier grass (Pennisetum purpureum Schum.) harvested at an early growth stage was ensiled with 4% of molasses in a polyethylene bag silo which contained 15 kg of chopped forage each. Dry matter (DM) content of the silage was so low as 14.75%, although chemical quality of the silage was very high. Ratio of ammonia nitrogen to total nitrogen was 6.59%, and the pH value of the silage was 3.79. Nutritive value of the silage was estimated using goats and compared to that of a timothy hay as a reference ration. Feeding level of each rations was adjusted to a level of nitrogen (N) recommendation. DM and N digestibilities of the silage were 65.0 and 54.5%, respectively, but those of the timothy hay were 37.6 and 37.2%. Feeding of the napier grass silage maintained body weight and kept positive N retention. Ammonia N concentration in the rumen fluid in goats fed the napier grass silage increased after feeding, but blood urea concentration was constant. Feeding of the timothy hay did not increase ammonia N concentration in the rumen fluid, but increased blood urea concentration. These facts indicated that the napier grass silage had enough digestible DM and N for maintenance ration to goats.

Nutritional Quality of Napier Grass (Pennisetum purpureum Schum.) Silage Supplemented with Molasses and Rice Bran by Goats

  • Yokota, H.;Fujii, Y.;Ohshima, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.697-701
    • /
    • 1998
  • In order to improve silage quality and utilization of napier grass (Pennisetum purpureum Schum.) by goats, the grass was ensiled with molasses (MOL) and/or defatted rice bran (DRB). Napier grass was harvested at the growing stage in July and cut into 3 cm length. The grass was mixed with 4% MOL and/or 15% DRB, ensiled 15 kg each into plastic bags and stored for 9 months. Dry matter content of the silage ensiled with MOL (MOL-silage) was 13.4%, but increased to 20% with DRB addition. The addition of MOL decreased pH value and ammonia nitrogen content, but increased lactic acid content. MOL-silage contained about 6% spoilage, but addition of DRB decreased spoilage to less than 1%. Goats were fed the silage at a level of 2.25% (DM basis) of their body weight. Goats fed DRB- or MOL/DRB-silages maintained nitrogen retention, but goats fed MOL-silage did not. The rumen fluid of goats fed DRB-silage tended to be higher in acetic acid and lower in propionic acid than those fed the other silages. Ammonia in the rumen fluids, urea nitrogen in the blood and the urinary nitrogen excretion were the lowest in goats fed MOL/DRB-silage. As the result, the ratio of retained nitrogen to nitrogen intake was the highest in goats fed MOL/DRB-silage. In conclusion, addition of DRB to napier grass increased DM of silage and decreased the volume of spoilage. The combination of MOL and DRB can improve the fermentation quality and thus enhance the utilization of the silage by goats, more than the MOL or DRB being as a single treatment.

Glucose Kinetics for Milk Synthesis in Etawah Crossbred Goats Fed King Grass Silage Prepared with Manure

  • Kiranadi, B.;Sastradipradja, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.982-985
    • /
    • 2002
  • A study was carried out to determine glucose kinetics, nutrient balance and milk production of lactating Etawah crossbred goats. The animals (27.2 to 29.1 kg BW) were randomly divided into four levels of dietary treatment groups: the first group R1 received 100% (3 kg) fresh king grass (Penisetum purpuroides), the second group R2 received 75% king grass and 25% king grass silage prepared with chicken manure, the third group R3 received 50% king grass and 50% silage, and the fourth group R4 received 100% silage. In addition to the roughage, each group received 800 g of concentrate (CP 14.77% of DM; 17.26 MJ/kg). Animals fed king grass silage made with chicken manure were found to be superior to the group fed king grass alone. Glucose kinetics and retained energy were significantly affected. Calculations showed that glucose requirements for maintenance and milk production can be met for the groups with high levels of silage (R3 and R4). The values of glucose flux were in the range of 2.52 to 4.50 mg/min.kg $BW^{0.807}$ which are lower, but close to, the values for the temperate lactating dairy cow. The present glucose flux value for the lactating Etawah crossbred goat is higher than the previous value published from this laboratory.

Feeding of Sugar Cane Silage to Dairy Cattle during the Dry Season

  • Suksombat, Wisitiporn;Junpanichcharoen, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1125-1129
    • /
    • 2005
  • A study was conducted to determine the effect of feeding sugar cane silage compared to chopped whole sugar cane or grass silage on performances of lactating dairy cows during the dry season. Twenty four Holstein Friesian crossbred (>87.5% Holstein Friesian) lactating dairy cows in mid lactation; averaging 15.4${\pm}$3.2 kg of milk, 120${\pm}$23 days in milk, 50.5${\pm}$6.5 months old and 432${\pm}$39 kg live weight, were stratified for milk yield, days in milk, age, stage of lactation and body weight, and then randomly allocated to three treatment groups (8 cows in each group). All cows were fed 7.5 kg/d commercial concentrate plus ad libitum roughage according to treatment groups, which were grass silage, sugar cane silage or chopped whole sugar cane respectively. All cows consumed similar DM and produced similar milk and milk composition yields. However, cows on grass silage lost more weight than the other cows. The present study indicated that, during the dry season, sugar cane silage can be fed to lactating dairy cows, while giving similar milk yield to grass silage or chopped whole sugar cane.

The Effect of Nitrogen Fertilization to the Sward on Guineagrass (Panicum maximum Jacq cv. Gatton) Silage Fermentation

  • Namihira, Tomoyuki;Shinzato, Naoya;Akamine, Hikaru;Nakamura, Ichiro;Maekawa, Hideaki;Kawamoto, Yasuhiro;Matsui, Toru
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.358-363
    • /
    • 2011
  • To investigate the effect of nitrogen fertilization on the quality of tropical grass silage, guinea grass grown with 3 types of nitrogen fertilizers, namely, urea, ammonium sulfate, and compound fertilizer 804, at 2 fertilization levels, 0.5 and 2.5 kg $Na^{-1}$ (0.5 N and 2.5 N, respectively), was subjected to silage fermentation. Silage fertilized with 0.5 N showed butyrate-dominant fermentation, irrespective of the type of fertilizer used. On the other hand, fermentation of silage fertilized with 2.5 N was significantly affected by the type of fertilizer used; fertilization with ammonium sulfate and compound fertilizer 804 resulted in silage that contained a large amount of butyrate and no lactate; this silage was considered to be of a significantly low quality as compared with silage fertilized with 0.5 N. Among silage fertilized with 2.5 N, the desirable butyrate-free fermentation was found only in urea-fertilized silage, which had the best quality. Grass material fertilized with a high level of urea accumulated a relatively high concentration of nitrate nitrogen (0.22% dry matter). Our results presented here suggest that nitrogen fertilizer management could affect the quality of tropical grass silage and that a relatively high concentration of nitrate in silage may promote butyrate-free fermentation even in tropical grass silage.

Effect of Grass Silage Supplementation on Performance in Lactating Cows Grazing on Pasture

  • Sung, K.I.;Okubo, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1409-1418
    • /
    • 2001
  • Two trials were carried out during two different grazing seasons to evaluate effect of grass silage supplementation, when amount of pasture is limited on dry matter intake (DMI), milk production, and gross energetic efficiency (GEE) of grazed lactating cows on a high forage-based diet. Fifty-one Holstein cows were randomly assigned to one of two dietary treatments: high pasture group or high silage group. In the spring flush, pasture and silage DMI, milk yield, milk fat percentage, and GEE were not different between the dietary groups. After the spring flush, pasture and silage DMI were higher for the high silage group than for the high pasture group. After the spring flush, although these were the higher total DMI of the high silage group than the high pasture group, milk yield was significantly (p<0.05) higher for the high pasture group than the high silage group. Milk fat percentage tended to be higher for the high silage group than the high pasture group. The GEE was significantly (p<0.05) higher for the high pasture group than the high silage group during after the spring flush. This study indicated that supplementation of grass silage, especially after the spring flush, can have a significant effect of increasing of forage intake and maintenance of the milk fat percentage; but not increase milk yield and GEE.

The Effects of Additives in Napier Grass Silages on Chemical Composition, Feed Intake, Nutrient Digestibility and Rumen Fermentation

  • Bureenok, Smerjai;Yuangklang, Chalermpon;Vasupen, Kraisit;Schonewille, J. Thomas;Kawamoto, Yasuhiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1248-1254
    • /
    • 2012
  • The effect of silage additives on ensiling characteristics and nutritive value of Napier grass (Pennisetum purpureum) silages was studied. Napier grass silages were made with no additive, fermented juice of epiphytic lactic acid bacteria (FJLB), molasses or cassava meal. The ensiling characteristics were determined by ensiling Napier grass silages in airtight plastic pouches for 2, 4, 7, 14, 21 and 45 d. The effect of Napier grass silages treated with these additives on voluntary feed intake, digestibility, rumen fermentation and microbial rumen fermentation was determined in 4 fistulated cows using $4{\times}4$ Latin square design. The pH value of the treated silages rapidly decreased, and reached to the lowest value within 7 d of the start of fermentation, as compared to the control. Lactic acid content of silages treated with FJLB was stable at 14 d of fermentation and constant until 45 d of ensiling. At 45 d of ensiling, neutral detergent fiber (NDF) and acid detergent fiber (ADF) of silage treated with cassava meal were significantly lower (p<0.05) than the others. In the feeding trial, the intake of silage increased (p<0.05) in the cow fed with the treated silage. Among the treatments, dry matter intake was the lowest in the silage treated with cassava meal. The organic matter, crude protein and NDF digestibility of the silage treated with molasses was higher than the silage without additive and the silage treated with FJLB. The rumen parameters: ruminal pH, ammonia-nitrogen ($NH_3$-N), volatile fatty acid (VFA), blood urea nitrogen (BUN) and bacterial populations were not significantly different among the treatments. In conclusion, these studies confirmed that the applying of molasses improved fermentative quality, feed intake and digestibility of Napier grass.

Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage

  • Zhao, Jie;Dong, Zhihao;Li, Junfeng;Chen, Lei;Bai, Yunfeng;Jia, Yushan;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.783-791
    • /
    • 2019
  • Objective: This study was to evaluate the fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro gas production of rice straw ensiled with lactic acid bacteria and molasses. Methods: Fresh rice straw was ensiled in 1-L laboratory silos with no additive control (C), Lactobacillus plantarum (L), molasses (M) and molasses+Lactobacillus plantarum (ML) for 6, 15, 30, and 60 days. After storage, the silages were subjected to microbial and chemical analyses as well as the further in vitro fermentation trial. Results: All additives increased lactic acid concentration, and reduced pH, dry matter (DM) loss and structural carbohydrate content relative to the control (p<0.05). The highest organic acid and residual sugar contents and lignocellulose reduction were observed in ML silage. L silage had the highest V-score with 88.10 followed by ML silage. L and ML silage improved in vitro DM digestibility as compared with other treatments, while in vitro neutral detergent fibre degradability (IVNDFD) was increased in M and ML silage (p<0.05). M silage significantly (p<0.05) increased propionic acid (PA) content and decreased butyric acid content and acetic acid/PA as well as 72-h cumulative gas production. Conclusion: The application of ML was effective for improving both the fermentation quality and in vitro digestibility of rice straw silage. Inclusion with molasses to rice straw could reduce in vitro ruminal gas production.