• Title/Summary/Keyword: Growth hormone

Search Result 482, Processing Time 0.25 seconds

Mechanism of Growth Hormone Action : Recent Developments - A Review

  • Sodhi, R.;Rajput, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1785-1793
    • /
    • 2001
  • The interaction of growth hormone with it's receptor results in dimerization of receptor, a feature known in action of certain cytokines. The interaction results in generation of number of signalling molecules. The involvement of Janus kinases, mitogen activated kinases, signal transduction and activator of transcription proteins, insulin like substrate, phosphatidylinositol 3-kinase, phospholipase C, protein kinase C is almost established in growth hormone action. There are still many missing links in explaining diversified activities of growth hormone. Amino acid sequence data for growth hormones and growth hormone receptors from a number of species have proved useful in understanding species specific effects of growth hormone. Complete understanding of growth hormone action can have implications in designing drugs for obtaining desired effects of growth hormone.

Short Stature and Growth Hormone Therapy (저신장 소아를 위한 성장호르몬 치료)

  • Park, Yong-Hoon
    • Journal of Yeungnam Medical Science
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • Normal growth and development is of prime concern during childhood. The treatment of children with growth hormone deficiency has been revolutionized by growth hormone therapy. An improved height outcome with a final height within the target height range has been achieved. However, close follow-up with regular clinical and laboratory monitoring is essential for achieving the desirable height outcome. The theoretical unlimited supply of growth hormone has led to its wide spread use in a variety of disorders other than a growth hormone deficiency. Initially used in children with Turner syndrome, growth hormone is now used to treat chronic renal failure, an idiopathic short stature and intrauterine growth restrictions in addition to a wide array of newly emerging indications. This review summarizes the basics for a proper growth assessment, the differentiation of normal and abnormal growth causes of a short stature, and the indications for growth hormone treatment.

  • PDF

GROWTH HORMONE CONCENTRATIONS IN LACTATING CROSSBRED COWS AND BUFFALOES

  • Jindal, S.K.;Ludri, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.4
    • /
    • pp.319-322
    • /
    • 1990
  • The studies were conducted on 12 lactating animals comprising of six Karan Swiss (KS) cows and six Murrah buffaloes in second and third lactation. At the start of experiment the cows had completed on an average 51 days in lactation and were yielding an average of 15.1 kg milk a day. The buffaloes had completed 53 days in lactation and were yielding an average of 11.6 kg milk a day. At fortnightly intervals jugular blood samples were drawn at morning, noon, evening and night hours. Plasma growth hormone concentrations were highest during morning and thereafter decreased. In both the species there was a definite trend in the change of growth hormone concentrations during the day. In general growth hormone concentration decreased as the stage of lactation advanced. The overall average values of plasma growth hormone in cows and buffaloes were 2.95 and 2.48 ng/ml which were not statistically different. With the advancing lactation, the decline in milk yields in both the species was positively correlated with the growth hormone concentrations.

EFFECT OF TRYPSIN-DIGESTED BOVINE GROWTH HORMONE ON WHOLE-BODY PROTEIN SYNTHESIS IN VITRO IN CHICKEN EMBRYOS

  • Kita, K.;Hatano, S.;Okumura, J.;Muramatsu, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.319-323
    • /
    • 1993
  • The effect of bovine growth hormone digested with trypsin on whole-body protein synthesis in vitro of chicken embryos was investigated by using a whole-embryo culture system. Bovine growth hormone at 5.3 and 530 ng/ml was digested partially and completely with trypsin for 4 min and 18 h, respectively. After culturing chicken embryos with a synthetic medium containing $L-[4-^3H]$ pheylalanine, whole-embryo protein synthesis was determined from the ratio of specific radioactivities of free and protein-bound pheylalanine. Whole-embryo protein synthesis of the control group cultured with no bovine growth hormone was $49.5{\pm}2.2%/d$. There was no significant interaction between digestion time and the concentration of trypsin-digested bovine growth hormone. Tryptic digestion of bovine growth hormone increased fractional synthesis rates of whole-body protein compared to the 0-min groups, and there was no significant difference between the 4-min and 18-h groups. The higher concentration (530 ng/ml) of trypsin-digested bovine growth hormone was more effective in enhancing whole-embryo protein synthesis than the lower concentration (5.3 ng/ml).

Porcine growth hormone induces the nuclear localization of porcine growth hormone receptor in vivo

  • Lan, Hainan;Liu, Huilin;Hong, Pan;Li, Ruonan;Zheng, Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.499-504
    • /
    • 2018
  • Objective: Recent studies have challenged the traditional paradigm that growth hormone receptor (GHR) displays physiological functions only in the cell membrane. It has been demonstrated that GHR localizes to the cell nucleus and still exhibits important physiological roles. The phenomenon of nuclear localization of growth hormone (GH)-induced GHR has previously been described in vitro. However, until recently, whether GH could induce nuclear localization of GHR in vivo was unclear. Methods: In the present study, we used pig as an animal model, and porcine growth hormone (pGH) or saline was injected into the inferior vena cava. We subsequently observed the localization of porcine growth hormone receptor (pGHR) using multiple techniques, including, immunoprecipitation and Western-blotting, indirect immunofluorescence assay and electronmicroscopy. Results: The results showed that pGH could induce nuclear localization of pGHR. Taken together, the results of the present study provided the first demonstration that pGHR was translocated to cell nuclei under pGH stimulation in vivo. Conclusion: Nuclear localization of pGHR induced by the in vivo pGH treatment suggests new functions and/or novel roles of nuclear pGHR, which deserve further study.

Molecular Cloning of Seven-band Grouper (Epinephelus septemfasciatus) Growth Hormone cDNA and Its Expression in Escherichia coli

  • Lee Jehee;Munasinghe Helani;Song Choon Bok
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.3
    • /
    • pp.116-124
    • /
    • 2003
  • Isolation and cloning of seven-band grouper (Epinephelus septemfasciatus) growth hormone cDNA from pituitary gland revealed an open reading frame of 612 bp coding for a pre-growth hormone of 204 amino acids with a 17 amino acid putative signal peptide. Deduced amino acid sequence showed that there was one possible N-glycosylation site at $Asn^{l84}$ and four cysteine residues $(Cys^{52},\;Cys^{160},\;Cys^{177},\;Cys^{185})$ on t e same positions as in some other species where they were involved in the stabilization of the tertiary structure. The seven-band grouper growth hormone (sbgGH) presented a $99.5\%$ amino acid sequence identity with the growth hormone of Epinephelus coioides and contained the conserved hormone domain region. Comparison of growth hormone sequences from evolutionarily diverse species revealed 25 amino acid residues conserved in jawless fishes to modern mammals. It also revealed an evolutionary trend to retain the same polypeptide sequence even in the distantly related animals while allowing alterations to occur in polypeptides of the closely related species. In order to create a recombinant system to produce high levels of the growth hormone, it was expressed in Escherichia coli (BL21) cells. The gel analysis revealed theoretically expected molecular weights for both mature and pre-sbgGHs.

THE EFFECTS OF SOMATOSTATIN INFUSION ON THE PLASMA PROFILE OF GROWTH HORMONE, INSULIN AND CORTISOL IN SHEEP

  • Rose, M.T.;Obara, Y.;Fuse, H.;Hodate, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.1
    • /
    • pp.57-61
    • /
    • 1996
  • Four castrated Corriedale sheep were used in an experiment to observe the changes in insulin, growth hormone and cortisol in blood plasma following a prolonged infusion of a high rate of somatostatin (SRIF). The animals wee infused with either saline, 25 or $50{\mu}g/kg/h$ of SRIF for 3 hours. Blood samples wee taken every 20 minutes until 1 hour following the end of the SRIF infusion. Both SRIF infusion levels suppressed the release of insulin into plasma to approximately 3.5 mU/l. The SRIF infusions reduced the concentration of growth hormone to barely detectable levels. Following the withdrawal of SRIF there was a massive release of growth hormone. The plasma concentration of growth hormone reached 60 ng/ml within 20 minutes, the length of the growth hormone discharge was in excess of 1 hour. The extent of the discharge of growth hormone following the SRIF infusions was greater than that suppressed by the infusion. The SRIF apparently caused an increase in the plasma concentration of cortisol at the end of the infusion and following is withdrawal. This is possibly associated with some change in the metabolic rate associated with the suppression of insulin or glucagons release. The present experiment demonstrates that a high rate of SRIF infusion can not completely inhibit the release of insulin into the plasma.

Induction of Growth Hormone by the Roots of Astragalus membranaceus in Pituitary Cell Culture

  • Kim, Chung-Sook;Ha, Hye-Kyung;Kim, Jin-Sook;Kim, Yun-Tai;Kwon, Sun-Chang;Park, Sie-Won
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.34-39
    • /
    • 2003
  • The traditional Asian medicinal herb, roots of Astragalus (A.) membranaceus (Leguminosae), is used for many purposes, some of which are purported to stimulate the release of growth hormone in vivo. Extracts of A. membranaceus were tested to determine whether they stimulate the release of growth hormone in rat pituitary cell culture. A. membranaceus was extracted sequentially with 80% ethanol (fraction A), n-hexane (fraction B); the test compound from the herbal extraction was isolated using silica gel column chromatography and was identified with spectral data. Test compound was also extracted by traditional boiling water methods. Induction of growth hormone in pituitary cell culture was conducted with isolated compounds and extracted fractions of A. Radix (dried roots of A. membranaceus). The fraction A was not active in the rat pituitary cell culture, but the fraction B derived from the ethanol fraction stimulated the release of growth hormone in culture. Six compounds from fraction B (1-6) were isolated and identified previously. The compounds 1,2-benzendicarboxylic acid diisononylester (1), $\beta$-sitosterol (2), and 3-Ο-$\beta$-D-galactopyranosyl-$\beta$-sitosterol (5) did not induce growth hormone release in the culture. Formononetin (3), 9Z, 12Z-octadecadienoic acid (4), stigmast-4-en-6$\beta$-o1-3-one (6) and 98-E, a mixture of 1'-9, 12-octadecadienoic acid (Z,Z)-2',3'-dihydroxy-propylester (7) and 1'-hexadecanoic acid-2',3'-dihydroxy-propylester (8) stimulated the release of growth hormone in the rat pituitary cell culture significantly compared to the control. In conclusions, four compounds isolated from extracts of A. Radix induced growth hormone release in the rat pituitary cell culture. The 98-E isolate was the most active inducer of growth hormone release.

Growth Hormone Therapy in Children with Prader-Willi Syndrome

  • Im, Minji
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.5 no.1
    • /
    • pp.34-38
    • /
    • 2021
  • Prader-Willi syndrome is a complicated genetic disorder caused by a mutation on chromosome 15q11-13. The disease results in morbid obesity due to hyperphagia, growth disturbance, multiple endocrine problems from hypopituitarism, developmental delay, and cognitive or behavioral problems. Recombinant human growth hormone has been used to improve body composition and muscle mass, which plays a main role in treating patients with Prader-Willi syndrome. We describe previous studies showing the efficacy and safety of growth hormone treatment in children with Prader-Willi syndrome and provide treatment guidelines. Growth hormone therapy could be beneficial for children with Prader-Willi syndrome and improve their quality of life.

Verification for the Effect of Growth Hormone Promotion and Kinetic Factor Evaluation on Growth Hormone Activated Shoes (성장호르몬 활성화 신발에 대한 운동역학적(지면반력, 최대압력) 평가 및 성장호르몬 분비 효과 검증)

  • Moon, Young-Jin
    • Korean Journal of Sport Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.235-243
    • /
    • 2008
  • The purpose of this study is to find out the effect of Growth Hormone promotin and kinetic factors on Growth Hormone Activated Shoes. The results of the present study were as follows; First, there was a significient difference between a normal shoes and the Growth Hormone activated shoes in the student's GH secretion with running test, and there was a significant interaction effect between shoes and distance. therefore it can be assumed that there is a significant effect of GH secretion in student at growth period during running with Growth Hormine Activated Shoes. Second, Within 4km walking, Growth Hormone secretion was in creased averagely in student. Third, Growth Hormone Activated Shoes make a large load for light motion as walking. For heavy motion as running, it make a large impulsion but good pressure distribution and small loading rate.