• Title, Summary, Keyword: Gusset-Tube connection

Search Result 8, Processing Time 0.03 seconds

Behavior and design of stainless steel tubular member welded end connections

  • Kiymaz, Guven;Seckin, Edip
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.253-269
    • /
    • 2014
  • Among the various alternatives to make a steel tubular member connection, making a slotted and gusset plate welded connection is one of the most frequently preferred alternatives. This type of connection is essentially an end connection that is made by slotting the tube longitudinally, inserting the gusset plate and then placing longitudinal fillet welds at the tube-to-plate interface. In this paper an experimental study on the behaviour of such connections in stainless steel is presented. 24 specimens were tested under concentrically applied axial tensile forces for varying tube-to-gusset plate weld lengths. Both circular and box section members were considered in the test program. Load-deformation curves were obtained and comparisons were made in terms of strength and ductility. The results obtained from the study were then critically examined and compared with currently available design guidance for slotted gusset plate welded tubular end connections. It is noted that no specific rules exist in international specifications on structural stainless steel which cover the design of such connections. Therefore, the results of this study are compared with the existing design rules for carbon steel.

An Study on the Stiffened Effect of K-type Tubular Connection (강관 K형 접합부의 보강효과에 관한 연구)

  • Kim, Woo Bum;Lee, Young Jung;Kim, Kap Sun;Chung, Soo Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.609-619
    • /
    • 2001
  • It is almost impossible to evaluate the ultimate strength theoretically, because the behavior of Gusset-Tube connection stiffened with rib-plate is considerably complicate. Therefore in this study a finite element model of gusset-tube connection stiffened with rib-plate was established. The validity of finite element analysis was examined through comparing with previous experimental result and the behavior and strength of the connection was examined. From the parametric study considering lateral force ratio, eccentricity, gusset length based on finite element model, the stiffened effect was estimated and stiffening method was proposed.

  • PDF

Behavior of gusset plate-T0-CCFT connections with different configurations

  • Hassan, M.M.;Ramadan, H.M.;Naeem, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.735-751
    • /
    • 2014
  • Concrete-filled steel tube (CFT) composite columns, either circular (CCFT) or rectangular (RCFT), have many economical and aesthetic advantages but the behavior of their connections are complicated. This study aims to investigate, through an experimental program, the performance and behavior of different connections configurations between circular concrete filled steel tube columns (CCFT) and gusset plates subjected to shear and axial compression loadings. The study included seventeen connection subassemblies consisting of a fixed length steel tube and gusset plate connected to the tube end with different details tested under half cyclic loading. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution.

A Study on the Ultimate Strength of Tube-Gusset Connection Considering Eccentricity (편심이 고려된 강관-가셋트 접합부의 극한 내력)

  • Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.201-210
    • /
    • 2001
  • A numerical analysis and experimental study were performed to investigate the behavior and strength of tube-gusset connection subjected to axial and lateral forces. To investigate the behavior of the connections, experiment was conducted by applying three directional loads. Local buckling and local plastic bending deformation of the connection were observed from the test. Analytical results were compared with test results for the limited cases. Primary interests here are the effect of eccentricity on the strength of the connection. To suggest a formula for the strength of tube-gusset connection, lateral forces were replaced with equivalent wall moment and eccenrtric vertical component force of lateral force. Ultimate strength formula for the each force was proposed. Finally, nondimensionalized ultimate strength interaction relationships between the wall moment of tube($M_w$), vertical axial force($P_v$), and eccentric vertical component of lateral force($P_e$) were formulated through parametric study.

  • PDF

Experimental and numerical study of one-sided branch plate-to-circular hollow section connections

  • Hassan, M.M.;Ramadan, H.;Abdel-Mooty, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.877-895
    • /
    • 2015
  • Connections to circular hollow steel sections (CHS) are considered one of the most complex and time consuming connections in steel construction. Such connections are usually composed of gusset plates welded to the outside of the steel tube or penetrating the steel tube. Design guides, accounting for the effect of connection configuration on the strength of the connection, are not present. This study aims to investigate, through experimental testing and a parametric study, the influence of connection configuration on the strength of one sided branch plate-to-CHS members. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution. A parametric study is performed using the calibrated analytical model to include a wider range of parameters. The study involves 26 numerical analyses of finite element models including parameters of the diameter-to-thickness (D/t) ratio, length of gusset plate, and connection configuration. Accordingly, a modification to the formulas provided by the current design recommendations was suggested to include connection configuration effects for the one sided branch plate-to-CHS members.

A Study on Eccentric Joint of K-type Gusset-Tube Connection (K형 가셋트-강관 접합부의 편심접합에 관한 연구)

  • Kim, Woo Bum;Kim, Kap Sun;Chung, Soo Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.81-89
    • /
    • 2001
  • Experiments and the parametric based on finite element model were conducted to investigate the behavior and strength of a gussettube connection concerned with eccentricity and selenderness ratio. Because of limitations in loading capacity the specimens were fabricated with 1/3 scale of full size. Of primary interest here are the ultimate strength of connections having eccentricity caused by lateral loads. As a result the effect of eccentricity on the buckling strength was examined and the validity of the finite element model adopted in this study was verified through comparing with test results.

  • PDF

Test and Analysis on the Longitudinal Gusset Plate Connection to Circular Hollow Section (CHS) of High Strength (고강도 원형강관의 길이방향 거셋플레이트 접합부 실험 및 해석)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • With the increase in the demand for high-rise buildings, the use of high-strength steel has likewise increased. Thus, it has become more necessary to study the resistance force of the high-strength hollow structural section (HSS) joint of 600MPa. Additionally, the current design equation in Korea limits maximum yield stress at 360MPa in the case of HSS. In other words, since the current specification does not apply to HSS of 600MPa, this study aims to investigate the applicability of design equations as well as examine the behavior of the connection through the experiment and finite element analysis (FEA) of the plate-tube connection of 600MPa. In particular, this paper presents the behavior of joints with the gusset plates welded in the longitudinal direction of the circular hollow section (CHS) when the joints are subjected to lateral force. Comparing design equations with the results of FEA and the test, existing design equations are underestimated to be 56~79% in the case of high-strength materials.

Strengthening of concrete structures with buckling braces and buckling restrained braces

  • Mazloom, Moosa;Pourhaji, Pardis;Farash, Abbas Moosa;Sanati, Amir Hossein
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.391-416
    • /
    • 2018
  • The purpose of this article is to strengthen concrete structures using buckling and non-buckling braces. Connection plates are modeled in three shapes including the effect of 1.5t hinge zone length, 2t one and without the zone (1.5t-CP, 2t-CP and WCP). According to the verification performed with ABAQUS software, the connection plates which are superior in ductility and strengthening are found. The results show adding steel braces in concrete moment frames increase the strength and stiffness of the structures up to about 12 and 3 times, respectively. The frame strength increased about 21 and 25 percent with considering the effect of 2t hinge length in connection plates compared to 1.5t-CPs and WCPs. Also the ductility of retrofitted frames with 2t-CP improved 2.06 times more than WCP ones. Thus, 2t-CP sample is the best choice for connecting steel braces to concrete moment frames for retrofitting them. Afterwards, optimum conditions for elemental coating in braces with no buckling are assessed. The length of concrete coatings could be reduced about 30 percent, and buckling did not occur. Therefore, the weight of restraining coating decreased, and its performance improved. It is worth noting that BRBs could be constructed with only steel materials, which have outer steel tubes too. In fact, only the square cross sections of the tube profiles are appropriate for removing the filler concrete, and the rectangular ones are prone to buckle around their weak axis.