• Title, Summary, Keyword: Gyro sensor

Search Result 328, Processing Time 0.053 seconds

Revising the DR (Dead-Reckoning) Angles Data Using Steering Wheel Sensor and Gyro Sensor (Telematics System 자립항법에서 Gyro Sensor를 이용한 Steering Wheel Angle Data 보정)

  • Park, Jin-Sup;Chung, Ki-Hyun
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.149-150
    • /
    • 2007
  • By adding Gyro sensor to support the steering wheel angle sensor, an improved functional DR solution is proposed in this paper The proposed angle data algorism is developed based on the steering wheel with Gyro sensor for DR. The Gyro sensor support the error of steering wheel sensor to improve the angle data for the DR algorism.

  • PDF

A Implementation of Virtual Reference Station System based on Gyro Sensor for High-Accuracy Location Measurement (고정밀 위치 측정을 위한 Gyro Sensor기반의 전자기준점 시스템 구현)

  • Kwon, Young-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.860-863
    • /
    • 2012
  • 본 논문에서는 지각의 실시간 측량과 데이터 수집을 위해 Gyro Sensor기반의 전자기준점 시스템을 제안한다. 이를 위해 GPS 모듈, 환경 센서 및 Gyro Sensor를 이용하여 측량값을 데이터화하고 데이터값을 CDMA 모듈 방식을 이용해 데이터베이스 서버로 전송한다. 또한 측정값을 사용자 기반의 시스템 GUI를 구현함으로써 실시간으로 모니터링이 가능하도록 구현하였다.

  • PDF

Development of the Servo Motion Controller using Gyro Sensor (Gyro Sensor 제어용 Servo Motion 제어기 개발)

  • Lee, Won-Bu;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.493-497
    • /
    • 2010
  • Real time coordinate conversion of vessel was realized, we developed motion control algorithm of DC Servo Motor. We made servo control circuit and PCB, also We developed the system using 3-axis Gyro Sensor based Servo Motion Controller. For ship's movement simulation, we made the ship simulator of 6 degree of freedom. With a mounted camera on developed simulator, We tested the desired ship's movement, and the desired result of error tolerance was obtained.

Implementation of Flight Simulator using 6DOF Motion Platform

  • Park, Myeong-Chul;Choi, Duk-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.17-23
    • /
    • 2018
  • In this paper, we implemented a flight posture simulator that intuitively understands aircraft flight posture and visualizes the principle of motion. The proposed system operates the 6 - axis motion platform according to the change of the navigation information and transmits the flight attitude to the simulator using the gyro sensor. A gyro sensor and an acceleration sensor are used together to analyze the attitude of the aircraft. The reason is that the gyro sensor has a cumulative error in the integration process. And the accelerometer sensor was compensated by using the complementary filter because noise was serious due to short term vibration. Using the compensated sensor information, the motion platform is operated by calculating the angle to be transmitted to the 6-axis motor. And visualization result is implemented using OpenGL. The results of this study can be used as teaching materials for students related to aviation in the future.

Attitude Estimation for the Biped Robot with Vision and Gyro Sensor Fusion (비전 센서와 자이로 센서의 융합을 통한 보행 로봇의 자세 추정)

  • Park, Jin-Seong;Park, Young-Jin;Park, Youn-Sik;Hong, Deok-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.546-551
    • /
    • 2011
  • Tilt sensor is required to control the attitude of the biped robot when it walks on an uneven terrain. Vision sensor, which is used for recognizing human or detecting obstacles, can be used as a tilt angle sensor by comparing current image and reference image. However, vision sensor alone has a lot of technological limitations to control biped robot such as low sampling frequency and estimation time delay. In order to verify limitations of vision sensor, experimental setup of an inverted pendulum, which represents pitch motion of the walking or running robot, is used and it is proved that only vision sensor cannot control an inverted pendulum mainly because of the time delay. In this paper, to overcome limitations of vision sensor, Kalman filter for the multi-rate sensor fusion algorithm is applied with low-quality gyro sensor. It solves limitations of the vision sensor as well as eliminates drift of gyro sensor. Through the experiment of an inverted pendulum control, it is found that the tilt estimation performance of fusion sensor is greatly improved enough to control the attitude of an inverted pendulum.

Development and Evaluation of 3-Axis Gyro Sensor based Servo motion control (3-Axis Gyro Sensor based on Servo Motion Control 장치의 성능평가기준 및 시험규격개발)

  • Lee, WonBu;Chang, Chulsoon;Kim, JeongKuk;Park, Soohong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.627-630
    • /
    • 2009
  • The combination of the marine use various multi sensor surveillance system technology with the development of servo motion control algorithm and gyro sensor in six freedom motion is implemented to analyze the movement response. The stabilization of the motion control is developed and Nano driving Precision Pan-Tilt/Gimbal system is obtained from the security positioning cameras with ultra high speed device is used to carry out the exact behavior of the device. The exact behavior will be used to make a essential equipment. Finally the development of the Nano Driving Multi Sensor, Nano of Surveillance System Driving Precision Pan-Tilt/Gimbal optimal design and production, 3-aix Gyro Sensor based with Servo Motion Control algorithm development, Image trace video software and hardware tracking the development is organized and discuss in details. The development of the equipment and the system integration are fully experimented and verified.

  • PDF

3-Axis Gyro Sensor based on Servo Motion Control System (3-Axis Gyro Sensor based on Servo Motion Control 시스템 개발)

  • Sun, Nana;Lee, Won-Bu;Park, Soo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.725-727
    • /
    • 2010
  • For simulation of Boat motion, pitch, motion element of roll and yaw direction could simulated. The combination of the marine use various multi sensor surveillance system technology with the development of servo motion control algorithm and gyro sensor in six freedom motion is implemented to analyze the movement response. The stabilization of the motion control is developed and Nano driving Precision Pan-Tilt/Gimbal system is obtained from the security positioning cameras with ultra high speed device is used to carry out the exact behavior of the device.

  • PDF

Machine Learning Model of Gyro Sensor Data for Drone Flight Control (드론 비행 조종을 위한 자이로센서 데이터 기계학습 모델)

  • Ha, Hyunsoo;Hwang, Byung-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.927-934
    • /
    • 2017
  • As the technology of drone develops, the use of drone is increasing, In addition, the types of sensors that are inside of smart phones are becoming various and the accuracy is enhancing day by day. Various of researches are being progressed. Therefore, we need to control drone by using smart phone's sensors. In this paper, we propose the most suitable machine learning model that matches the gyro sensor data with drone's moving. First, we classified drone by it's moving of the gyro sensor value of 4 and 8 degree of freedom. After that, we made it to study machine learning. For the method of machine learning, we applied the One-Rule, Neural Network, Decision Tree, and Navie Bayesian. According to the result of experiment that we designated the value from gyro sensor as the attribute, we had the 97.3 percent of highest accuracy that came out from Naive Bayesian method using 2 attributes in 4 degree of freedom. On and the same, in 8 degree of freedom, Naive Bayesian method using 2 attributes showed the highest accuracy of 93.1 percent.

Design of the Position Control System for Parabolic Antenna using Gyro Sensor (자이로센서를 이용한 파라볼릭 안테나의 위치제어시스템 설계)

  • Kim, Myeong Kyun;Kim, Jin Soo;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • In this paper, the parabolic antenna aims to the precise location of a moving ship or car that can be designed system using the gyro sensor. The parabolic antenna has controlled by stepping motor that is a lot of noise and slow response of speed. It has solved the problem which is noise and slow response using the BLDC motor. Also, in order to suppress the noise two-axis control and a separate encoder to the six degrees of freedom motion system was implemented in a precise location. Generally, the gyro sensor is not required to system that doesn't move the six degrees of freedom motion system. But the system will be applied to the moving such as ships or cars. Finally, we presented the position control algorithm at the sometimes controlled both gyro sensor and BLDC motor. This system was tracking that the location of the antenna to the desired angle and errors almost didn't happen when the system was moved 6 degrees of freedom.

Detection of Rotation in Jump Rope using 6-axis Accelerometer Gyro Sensor (6축 가속도 자이로 센서를 이용한 줄넘기 회전운동 검출)

  • Kim, Wanwoo;Heo, Gyeongyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.285-293
    • /
    • 2017
  • Jump rope has two motions. It starts as hand motion and ends as jump motion. Therefore, two motions should be considered together to detect rotations accurately. But previous researches only consider one of the two motions as in push-up, sit-up, lift dumbbells etc, which results in inaccurate detection of rotations. In this paper, detection of rotation in jump rope using two motions through 6-axis accelerometer gyro sensor is proposed. Jump motion is detected using accelerometer sensor and hand motion is detected using gyro sensor. Also start point and end point of jump rope is detected using magnitude and standard deviation of accelerometer and gyro sensor values. The count of rotation is detected using y-axis of gyro sensor value. Y-axis of gyro sensor value indicate hand motion of jump rope motion. The usefulness of the proposed method is confirmed through experimental results.