• Title, Summary, Keyword: HLB

Search Result 167, Processing Time 0.032 seconds

Effect of Emulsifiers on Characteristics of Microcapsule Containing Squid Liver Oil as a Core Material (유화제 종류에 따른 오징어 간유의 미세캡슐화 특성)

  • Hwang, Sung-Hee;Lee, Ki-Teak;Youn, Kwang-Sup
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.29-32
    • /
    • 2007
  • This study was carried out to investigate the effect of emulsifiers on the characteristics of microcapsule containing squid liver oil. The emulsion stability of glycerine monostearate (HLB 4) separated after 1 hr. Sucrose fatty acid esters (monostearate: di-, tri-, and tetrastearate=6:4; HLB 11), sucrose fatty acid esters (monostearate: di-, tri-, and tetrastearate=7:3; HLB 16) and glycerine monostearate (HLB 4) plus sucrose fatty acid esters (monostearate: di-, tri-, and tetrastearate= 7:3; HLB 16) separated after 1 hr 30 min. The microencapsulation efficiency prepared by HLB 16 was 35.0%. The polyunsaturated fatty acid composition was shown to be higher than 50% in all powders, and the ratio of the polyunsaturated fatty acid composition to the saturated fatty acid composition was found to be the same (2.07) for HLB 11 and HLB 16.

A Study on Emulsion Stability of O/W and W/S Emulsion according to HLB of Emulsifier (유화제의 HLB에 따른 O/W 및 W/S 에멀젼의 유화 안정성에 관한 연구)

  • Yeon, Jae Young;Shin, Bo Ram;Kim, Ta Gon;Seo, Jeong Min;Lee, Cheong Hee;Lee, Sang Gil;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.227-236
    • /
    • 2014
  • In this study, O/W and W/S emulsions were prepared by combining oils having different required hydrophilic lipophilic balance (HLB) values under the diverse conditions of HLB values composed of a hydrophilic surfactant and a lipophilic surfactant and their stability was investigated. Results showed that the higher the viscosity of O/W emulsions was as the lower the HLB value of emulsifier and emulsion particle showed a tendency to be a smaller and compact and stabler in centrifugal filtration. W/S emulsions also showed a similar tendency to be a smaller and compact as HLB values of emulsifier was higher and stabler in centrifugal filtration. However, the viscosity of W/S emulsion tended to get lower in HLB conditions of all emulsifiers as the time passed. This indicated that the emulsions had an unstable feature in long-term stability. In conclusion, the results showed opposite to the known theory that O/W emulsion is proper to be applied by nonionic surfactant with a high HLB value and W/S emulsion to be applied by nonionic surfactant with a low HLB value and provide useful information for the cosmetics research and related areas.

Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index

  • Hong, In Kwon;Kim, Su In;Lee, Seung Bum
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.123-131
    • /
    • 2018
  • Using mixed nonionic surfactants Span/Tween, we investigated the effects of HLB value on the O/W emulsion stability and rheological behaviors. In this study, MS-01 (Span 60 & Tween 60) and MS-02 (Span 80 & Tween 80) was used as mixed nonionic surfactants. We considered required HLB value 10.85 and selected corresponding HLB value range 8-13. The droplet size distributions, droplet morphology, rheological properties, zeta-potential and creaming index of the emulsion samples were obtained to understand the mechanism and interaction of droplets in O/W emulsion. The results indicated that optimal HLB number for O/W emulsions was 10.8 and 10.7, while using MS-01 surfactant and MS-02 surfactant respectively. MS-01 (HLB = 10.8) sample and MS-02 (HLB = 10.7) sample showed smallest droplet size and highest zeta-potential value. Rheological properties are measured to understand rheological behaviors of emulsion samples. All emulsion samples showed no phase separation until 30 days storage time at $25^{\circ}C$.

The Stability of Emulsions Formed by Phase Inversion with Variation of HLB of Surfactant (HLB 변화와 전상유화에 의해 형성된 에멀젼의 안정성)

  • Park, Soo-Nam;Yang, Hee-Jung;Kim, Jae-Hyun;Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.117-123
    • /
    • 2009
  • Caprylic/Capric triglyceride-in-water emulsions stabilized by Nikkol HCO-60 and HCO-10 were prepared using emulsion inversion point method at different HLB values. Emulsions with various droplet sizes were formed, and emulsion inversion point was detected by electrical conductivity. The change in emulsion droplet sizes and long term stability were monitored using laser scattering method and visual method. The droplet sizes and stability of emulsions were affected by HLB of surfactant. At emulsion inversion point, the water volume fraction increased as the HLB of surfactants decreased. According to our analysis, this resulted from a tendency of forming the W/O (water-in-oil) emulsion as the HLB of surfactants was decreased. The emulsion inversion point was clearly detected by the microscope and the electric conductivity meter. Nanometer-sized emulsion was obtained at the optimum HLB by using emulsion inversion point method. The main pattern of instability of emulsions in HLB 12 and 13 systems was Ostwald ripening. However, The patterns of instability of emulsions below 11 of HLB systems were Ostwald ripening and coalescence. All emulsions produced with surfactants in the range of HLB 8-13, creaming caused by density difference between water phase and oil phase.

The Effects of HLB Value of the Surfactants Added in the Silicon Oil Emulsion Antifoamer on the Antifoaming Ability (실리콘오일 에멀젼 소포제 조성에 있어서 유화제의 HLB가 소포성능에 미치는 영향)

  • Kim, Young-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.223-232
    • /
    • 2010
  • The effects of HLB value of nonionic mixed surfactants on the stability and antifoaming ability for silicon oil type emulsions were studied. To obtain a stable silicone emulsions, a higher HLB values and higher content of surfactants were preferred. To obtain a good antifoaming ability, however, a lower HLB value (more hydrophobic) and a lower content of the surfactants were preferred. It was observed, at lower HLB values(8 or 9), that the silicone oil drops were spreaded on the foam surface and effectively reduced the surface tension. And the spreading phenomena presumably acted as an antifoaming mechanism. Therefore, a higher hydrophobicity of the silicone oil emulsion resulted in a higher ability of antifoaming action.

Anti-Obesity Effects of Jeju Hallabong Tangor (Citrus kiyomi${\times}$ponkan) Peel Extracts in 3T3-L1 Adipocytes (제주산 한라봉 과피 추출물의 지방세포에서의 항비만 효과)

  • Lim, Heejin;Seo, Jieun;Chang, Yun-Hee;Han, Bok-Kyung;Jeong, Jung-Ky;Park, Su-Beom;Choi, Hyuk-Joon;Hwang, Jinah
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1688-1694
    • /
    • 2014
  • Jeju Hallabong Tangor (Citrus kiyomi${\times}$ponkan) is a Citrus species with a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated the anti-obesity effects of Hallabong Tangor peel extracts before (HLB) and after (HLB-C) bioconversion with cytolase based on modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 adipocytes. Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and increased flavanone aglycone forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with 0.5 mg/mL of Sinetrol (a positive control), HLB or HLB-C. Adipocyte differentiation was inhibited in both citrus groups, but not in control and Sinetriol groups. HLB and HLB-C tended to reduce insulin-induced mRNA levels of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$) and sterol regulatory element-binding protein 1c (SREBP1c). Compared to the control and Sinetrol groups, HLB and HLB-C markedly suppressed insulin-induced protein expression of $C/EBP{\alpha}$ and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The HLB and Sinetrol groups, but not HLB-C group, significantly increased adipolytic activity with higher release of free glycerol compared to the control group in differentiated 3T3-L1 adipocytes. These results suggest that bio-conversion of Hallabong Tangor peel extracts with cytolase increases aglycone flavonoids. Irrespective of bioconversion, both Hallabong Tangor peel extracts exert anti-obesity effects that may contribute to prevention of obesity through inhibition of adipocyte differentiation or induction of adipolytic activity.

Emulsion Stability of Cosmetic Facial Cream O/W Emulsions Prepared by Brij Type Non-ionic Emulsifie (Brij계 비이온성 혼합유화제를 이용하여 제조된 화장용크림 O/W 유화액의 유화안정성)

  • Park, Bo Ra;Lee, Seung Min;Choi, Junho;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.440-445
    • /
    • 2018
  • In this study, the stability of O/W cosmetic facial cream emulsions according to HLB values was evaluated by mixing nonionic surfactants, such as Brij 78&72 and Brij 98&92. Brij 78&72 (steareth-20&steareth-2, EMS-01), saturated fatty acid, and Brij 98&92 (oleth-20&oleth-2, EMS-02), unsaturated fatty acid, were used as mixed surfactants. The stability of the O/W emulsion was evaluated by using the emulsion viscosity, particle size, particle size distribution, and zeta-potential. The viscosity of the emulsion increased with the increase of time for EMS-01 while that of EMS-02 decreased with the increase of HLB value. The particle size of both EMS-01 and EMS-02 increased with time. The emulsifier with a HLB value of 10.8, which is the most similar to the required HLB value of mineral oil, 10.5, had the smallest particle size and highest density and also showed the highest emulsion stability. The zeta-potential of both emulsions tended to increase with the HLB value. No significant changes were observed in emulsions of the HLB value of 10.8 or more. The saturated fatty acid system, EMS-01, exhibited a higher zeta-potential value than that of the unsaturated fatty acid EMS-02 and also was superior in the stability.

Relationship between Emulsion Stability Index and HLB Value of Emulsifier in the Analysis of W/O Emulsion Stability (W/O형 유화계의 유화안정성 분석에 있어서의 유화안정지수와 HLB값과의 관계 규명)

  • Chang, Pahn Shick;Shin, Myung Gon;Lee, Won Myo
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.237-243
    • /
    • 1994
  • The stability of W/O emulsions (milk fat : water=4 : 1, w/w) containing various emulsifiers was compared to determine the effect of different chemical types of emulsifiers in relation to the change of HLB value caused by emulsifier type and the influence of single vs. binary emulsifier systems. These variables were compared at emulsifier HLB values of 0.5~16.7 and at emulsifier concentrations of 1.0~3.0%(w/w). Eleven emulsifiers used as 11 different single mixtures and 16 different binary mixtures were evaluated in W/O type emulsion systems containing 20.0%(w/w) of water in milk fat. This W/O emulsion was stable (more than 90.0 of ESI value) in the range of low value of emulsifier HLB (less than 4.7 of HLB value). All the ESI values of binary emulsifier systems were higher than those of single emulsifier systems. But, the influence pattern of emulsifier HLB on this emulsion stability in single emulsifier systems was very similar to the trend in binary emulsifier systems.

  • PDF

Evaluation of Coconut Oil-based Emulsion Stability Using Tween-Span Type Nonionic Mixed Surfactant (Tween-Span계 비이온성 혼합계면활성제를 이용한 Coconut Oil 원료 유화액의 유화안정성 평가)

  • Hong, Seheum;Zhu, Kaiyang;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.453-459
    • /
    • 2019
  • In this study, the influence factors on the stability of the O/W (oil in water) emulsions prepared with coconut oil and the nonionic mixed surfactant (Tween 80-Span 80) were evaluated. The concentration and HLB value of the nonionic mixed surfactant, and the degree of agitation were used as manufacture factors. The stability of prepared O/W emulsions were measured with the mean droplet size, zeta-potential, emulsion stability index (ESI), and thermal instability index (TII). The mean droplet size of the prepared O/W emulsions was from 100 to 200 nm. As the concentration of mixed surfactant and the homogenization speed increased, the droplet sizes decreased, while the zeta-potential values increased. The effect of HLB values increased in the order of 6.0, 10.0 and 8.0, and at the HLB value of 8 the smallest mean droplet size as 120 nm was obtained whereas the largest value of the zeta-potential between 10 and 60 mV. From the results of ESI and TII, the stability of prepared O/W emulsions increased in order of 6.0, 10.0 and 8.0 of HLB values, and ESI and TII values were above 80% and below 20% respectively at HLB value of 8.0.

Optimization of the Conditions for the O/W Emulsion Containing ${\omega}3$ Polyunsaturated Fatty Acid (${\omega}3$계 고도불포화지방산을 함유한 고안정성 수중유적형 유화계의 확립)

  • Chang, Pahn-Shick;Cho, Gye-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1114-1119
    • /
    • 1998
  • The stabilities of O/W emulsions (lipophilic core material:lipophobic wall material=3:2, w/w) containing various kinds of emulsifiers were compared to determine the optimal conditions of the HLB (hydrophilic lipophilic balance) value, the concentration and composition of emulsifier, the ratio of core material to the wall material, and the concentration and composition of polymers in the wall material. The effect of different chemical types of emulsifiers and the influence of single vs. binary emulsifier systems were compared with 13 kinds of emulsifier HLB values of $0.6{\sim}16.7$ at the concentration of 0.50%(w/w). The emulsion system was stable (more than 99.0 of ESI value) when the HLB value of the emulsifier was more than 11.0 or less than 2.8 of emulsifier HLB value. But it was unstable (less than 40.0 of ESI value) at the HLB value of the emulsifier between 3.4 and 8.6. Especially, we could find out the emulsion containing the emulsifier of polyglycerol polyricinoleate (PGPR, HLB 0.6) became stable creamy state. And, the ESI value of binary emulsifier system containing 0.25%(w/w) of PGPR and 0.25%(w/w) of polyoxyethylene sorbitan monolaurate (PSML, HLB 16.7) was higher than that of any single emulsifier system at the concentration of 0.50%(w/w). The highest emulsion stability was obtained in the liquefied wall material composed of 0.25%(w/v) of waxy corn starch and 0.50%(w/v) of agar.

  • PDF