• Title/Summary/Keyword: Heat transfer

Search Result 6,673, Processing Time 0.138 seconds

Experimental study on the characteristics of heat transfer for new type aluminum tube (신형 알루미늄관의 열전달 특성에 관한 실험적 연구)

  • 문춘근;윤정인;김재돌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.31-37
    • /
    • 2000
  • This study investigated heat transfer characteristics of refrigeration system using new type aluminium heat transfer tube for evaporator of refrigeration and air-conditioning comparing with bare tube. From the result of heat transfer experiment form one phase flow using cooled and hot water, about 20% heat transfer performance is superior in case of same quantity of flow and about 4% heat transfer performance if superior in case of same velocity comparing with bare tube. Casing of two phase flow, heat transfer performance of new type aluminum heat transfer tube shows about 50% superior heat transfer performance comparing with bare tube in the same evaporating pressure when using heat transfer tube as evaporator and shows about 47% increase when expressing performance coefficient as the rate of refrigerating capacity and compressing work. However, it can be known that pressure drop in the heat transfer tube is taken higher value of about 18% in case of new type aluminum heat transfer tube. From the above result, new type aluminum heat transfer tube is excellent comparing with bare heat transfer tube using the existing heat exchanger for refrigerator.

  • PDF

A study on the heat transfer performance of evaporator for absorption chiller (흡수식 냉온수기용 증발기의 전열성능에 관한 연구)

  • Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho;Kim, Hyo-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.192-197
    • /
    • 2008
  • The objectives of this paper are to measure the heat transfer and pressure drop of the heat transfer tube for an evaporator of absorption system applications. Five types of heat transfer tubes with different shape and heat transfer area are tested in the present experiment. Heat transfer and pressure drop performance of heat transfer tubes are measured in various operating conditions, and compared each other. The results show that the heat transfer rate of thermoexcel notch tube and low fin tube increases about 27.6% and 11.6% at the refrigerant flow rate 250 kg/h compared with that of bare tube, respectively. The thermoexcel notch tube is shown the best performance considering pressure drop and heat transfer coefficient.

  • PDF

Performance Evaluation of a Thermo Siphon Type Radiator for LED Lighting System by using an Inverse Heat Transfer Method (역열전달해석기법에 의한 LED 조명용 무동력 냉각사이클링 방열기 성능평가)

  • Kim, E.H.;Kim, H.K.;Seo, K.S.;Lee, M.K.;Cho, C.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.473-478
    • /
    • 2011
  • In this study, the performance of a thermo siphon type radiator made of copper for LED lighting system was evaluated by using an inverse heat transfer method. Heating experiments and finite element heat transfer analysis were conducted for three different cases. The data obtained from experiments were compared with the analysis results. Based on the data obtained from experiments, the inverse heat transfer method was used in order to evaluate the heat transfer coefficient. First, the heat transfer analysis was conducted for non-vacuum state, without the refrigerant. The evaluated heat transfer coefficient on the radiator surface was 40W/$m^2^{\circ}C$. Second, the heat transfer analysis was conducted for non-vacuum state, with the refrigerant, resulting in the heat transfer coefficient of 95W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$ for the radiator body, 5W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant for the rising position of radiator pipe, 35W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the highest position of radiator pipe, and 120W/$m^2^{\circ}C$ for the downturn position of radiator pipe. As a result of inverse heat transfer analysis, it was confirmed that the thermal performance of the current radiator was best in the case of the vacuum state using the refrigerant.

A Study on the Heat Transfer Perfomance of Dimpled Double Pipe Heat Exchanger on a Fuel Cell (연료전지용 딤플형 이중관열교환기의 열전달 성능에 관한 연구)

  • CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1727-1733
    • /
    • 2015
  • In the present study, the heat transfer performance of dimpled double-pipe heat exchangers for fuel cells that are utilized as cooling systems of fuel cells was studied. In addition, to comparatively analyze the heat transfer performance of dimpled double-pipe heat exchanger for fuel cells, plain double-pipe heat exchangers were also studied. Experimental results were derived on changes in the Reynolds numbers of the cooling water flowing in dimpled and plain double-pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical overall heat transfer coefficients and the experimental overall heat transfer coefficients were comparatively analyzed and the following results were derived. The heat transfer rate lost by the hot air and that of the heat transfer rate obtained by the cooling water were well balanced. The experiments of plain double-pipe heat exchangers and dimpled double-pipe heat exchangers were conducted under normal conditions and the theoretical overall heat transfer coefficient and the experimental overall heat transfer coefficient coincided well with each other. In both plain double-pipe heat exchangers and dimpled double-pipe heat exchangers, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of dimpled double-pipe heat exchangers was shown to be higher by 1.2 times than that of plain double-pipe heat exchangers.

A Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube (초임계상태의 물에 대한 관 내 층류유동장 및 열전달계수 분포특성에 관한 연구)

  • 이상호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.768-778
    • /
    • 2003
  • Numerical analysis has been carried out to investigate laminar convective heat transfer in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variations of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudocritical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number, Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity to the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

A Numerical Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube

  • Lee Sang-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.206-216
    • /
    • 2005
  • Numerical analysis has been carried out to investigate laminar convective heat transfer at zero gravity in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variation of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudo critical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number. Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity on the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

A Study on the Local Heat Transfer Characteristics for Circular Tubes Using Heat Transfer Promoter (열전달촉진체를 사용한 원관에서의 국소열전달 특성에 관한 연구)

  • Kwon Hwa-Kil;Yoo Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.389-396
    • /
    • 2006
  • For the successful design of heat exchangers, it is very important to understand local heat transfer phenomena on the circular tube of heat exchangers. In the present study, experiments are performed for single circular tube and tube banks with and without heat transfer promoters. The naphthalene sublimation technique is employed to measure the local mass transfer coefficients, and the measured local mass transfer data are converted to the local heat transfer data using heat and mass transfer analogy. The distribution pattern of local Nusselt numbers on single circular tube with heat transfer promoters is similar to that without the heat transfer promoter, but average Nusselt numbers are greatly increased. In case of tube banks without the heat transfer promoter, the Nusselt numbers are much lower in the first row than those of other rows, but the local heat transfer coefficients on all rows are equalized when the heat transfer promoter is installed.

Research on heat transfer coefficient of supercritical water based on factorial and correspondence analysis

  • Xiang, Feng;Tao, Zhou;Jialei, Zhang;Boya, Zhang;Dongliang, Ma
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1409-1416
    • /
    • 2020
  • The study of heat transfer coefficient of supercritical water plays an important role in improving the heat transfer efficiency of the reactor. Taking the supercritical natural circulation experimental bench as the research object, the effects of power, flow, pipe diameter and mainstream temperature on the heat transfer coefficient of supercritical water were studied. At the same time, the experimental data of Chen Yuzhou's supercritical water heat transfer coefficient was collected. Through the factorial design method, the influence of different factors and their interactions on the heat transfer coefficient of supercritical water is analyzed. Through the corresponding analysis method, the influencing factors of different levels of heat transfer coefficient are analyzed. It can be found: Except for the effects of flow rate, power, power-temperature and temperature, the influence of other factors on the natural circulation heat transfer coefficient of supercritical water is negligible. When the heat transfer coefficient is low, it is mainly affected by the pipe diameter. As the heat transfer coefficient is further increased, it is mainly affected by temperature and power. When the heat transfer coefficient is at a large level, the influence of the flow rate is the largest at this time.

A-Study on The Heat Transfer Performance of Evaporator Heat Transfer Tube for Absorption Chiller (흡수식 냉온수기 증발기용 전열관의 전열성능에 관한 연구)

  • Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho;Kim, Hyo-Sang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.4
    • /
    • pp.215-221
    • /
    • 2009
  • The objectives of this paper are to measure the heat transfer and pressure drop of the heat transfer tube for an evaporator of absorption system applications. Five types of heat transfer tubes with different shape and heat transfer area are tested in the present experiment. Heat transfer and pressure drop performance of heat transfer tubes are measured in various operating conditions, and compared each other. The results show that the heat transfer coefficient of thermoexcel notch tube increases about 79.6% and 45.3% at the film Reynolds number 69.7 compared with that of bare tube and low fin tube, respectively. The thermoexcel notch tube is show the best performance considering pressure drop and heat transfer coefficient.

Measurement of Heat Transfer Coefficient in a Duct with Double Imingement Jets (이중 충돌 제트를 갖는 내부 유로의 열전달 계수 측정)

  • Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Averaged heat transfer coefficients in the trailing edge model of a turbine blade with double impingements were measured using transient liquid crystals technique and conventional copper plate-thermocouple technique. The detailed distributions of heat transfer coefficients by transient liquid crystals technique were also presented. Results showed that increased heat transfer coefficient due to the inpingements and the averaged heat transfer coefficients increased as Reynolds number increased. Results by transient liquid crystals technique showed that the heat transfer coefficient strongly depended on the main stream temperature used in heat transfer coefficient calculation. The averaged heat transfer coefficients measured by different methods showed similar trend as Reynolds number changed, but the value varied up to 40% depending on the measurement technique.

  • PDF