• Title, Summary, Keyword: Height measurement

Search Result 1,406, Processing Time 0.056 seconds

An Image-Based Remote Snow Height Measurement System using a USN (이미지 및 USN 기반 원격 적설량 측정 시스템)

  • Lee, Hyung-Bong;Moon, Jung-Ho;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.2
    • /
    • pp.76-85
    • /
    • 2011
  • In conventional methods for measuring snow height, a graduated pole is installed on ground in an area of interest and the snow height is manually read from the pole. Recently, automated snow height measurement systems have been introduced to improve the conventional methods. The automated measurement systems, however, are quite expensive since they use the reflection of ultrasonic waves or laser beams. In addition, it is not easy to move the location of the automated measure systems. This paper proposes a snow height measurement system equipped with image sensors and wireless communication capability via a USN and the Internet. The proposed system has a resolution of 5 cm and easy to deploy without difficulties, which can be usefully used to monitor unforseen local snowfalls.

Chip stack height measurement of semiconductor using slit beam (슬릿빔을 이용한 반도체의 칩 적층 높이 측정)

  • Shin, Gyun-Seob;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.422-424
    • /
    • 2009
  • In this paper, we studied methods that measure chip stack height using slit beam in mold equipment among semiconductor manufacture equipments. We studied two methods to improve chip stack height measurement performance. First, it is relation of camera exposure time and height measurement repeatability. Second we could improve measurement performance applying method of least mean square method for measurement error minimization about PCB(Printed Circuit Board) flexure phenomenon.

  • PDF

A Study on the Development of Catenary stagger and height Measurement System (전차선 편위 및 높이 측정 시스템 개발에 관한 연구)

  • Song, Sung-Gun;Park, Seong-Mo
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.299-304
    • /
    • 2008
  • Catenary and Pantograph are a power supply devices for electric trains and shall be steadily contacted. Rail catenary must be installed precisely and managed for stable train operations. But external factors such as weathers, nature, etc., or aging affect catenary geometry. Changed catenary height causes high voltage spark or instant electric disconnection. Big spark and disconnection damage pantograph shoe and catenary coating and might interrupt rail operations. To prevent a big scale spark or electric disconnection catenary maintenance shall be required with catenary geometry measurement systems. In this paper, we describe the development of catenary height and stagger measurement system. The catenary height and stagger measurement system uses Acuity company's AR4000 Range Finder for distance measurement and AccuRange Line Scanner for degree measurement. This system reports suspicious overhead line sections with excessive height and stagger variance.

  • PDF

Consideration on the Experimental Measurement of Flaw Height of Welds by Ultrasonic Testing (초음파(超音波) 탐상법(探傷法)에 의(依)한 용접부(熔接部)의 결함(缺陷)높이 측정(測定)에 관한 연구(硏究))

  • Ahn, Il-Young;Yin, Tong-Kyu;Han, Eung-Kyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.2 no.1
    • /
    • pp.10-16
    • /
    • 1982
  • This study was carried out to measure the flaw height of welds in consideration of the effective probe angle in ultrasonic oblique detection. Specimens with inserted artificial flaws were made and flaw heights were estimated from detecting these specimens. Two different methods were applied to estimate flaw heights. From the result of the experiment, flaw height could be measured within the accuracy of 15% percent error and the difference between the probe distance method and beam path method is about 5% relatively small. It is considered that the results obtained this experimental study could be helpful informal ions for measuring flaw height.

  • PDF

Height Measurement of Cellphone Curved Glass using Camera (카메라를 이용한 휴대폰 곡면유리의 높이측정)

  • Kim, Han-Sol;Lee, Kyung-Jun;Jung, Dong-Yean;Lee, Yeon-Hyeong;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1002-1010
    • /
    • 2016
  • This paper describes the design of a cellphone curved glass measuring device using by camera. The measuring device was composed of two camera, two backlight system, a body and so on, and the program was made for a camera calibration and noise removal, and also the program was made for height measurement of a cellphone curved glass using by subpixel algorism. And then a new technique for measuring the height of the cell phone curved glass was proposed. The characteristics test of height measurement of gage blocks and cell phone curved glasses was carried out, the error of the height measurement of gage block is less than ${\pm}0.005$ and the error of the height measurement of the cell phone curved glasses is less than ${\pm}0.005$. Thus it thought that the designed cellphone curved glass measuring device and the new technique for measuring the height was used to measure the height of the cellphone curved glass.

Suggestion of assessment height for noise measurement according to the vertical radiation characteristics of railway noise (철도소음의 높이별 방사특성을 고려한 수음 평가 위치 제안)

  • Cho, Jun-Ho;Jang, Kang-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • Exact and precise noise measurement is the basis for the reduction measure R&D, impact assessment and prediction modeling for railway noise. In this study, research trend as well as national and international noise measurement standard are investigated. For the estimation of vertical radiation characteristics of railway noise, specially devised zig was used. From the noise measurement and analysis, exact noise height radiated from the railway was characterized. The obtained results will be used for the suggestion of the height of microphone position of railway noise measurements.

Study on the 3D Assembly Inspection of Two-Step Variable Valve Lift Modules Using Laser-Vision Technology (레이저 비전을 이용한 2단 가변밸브 리프트 모듈의 3D 조립검사에 대한 연구)

  • Nguyen, Huu-Cuong;Kim, Do-Joong;Lee, Byung-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.949-957
    • /
    • 2017
  • A laser-vision-based height measurement system is developed and implemented for the inspection of two-step variable valve lift module assemblies. The proposed laser-vision sensor module is designed based on the principle of laser triangulation. This paper summarizes the work on 3D point cloud data collection and height difference measurements. The configuration of the measurement system and the proposed height measurement algorithm are described and analyzed in detail. Additional measurement experiments on the height differences of valves and lash adjusters of a two-step variable valve lift module were implemented repeatedly to evaluate the accuracy and repeatability of the proposed measurement system. Experimental results show that the proposed laser-vision-based height measurement system achieves high accuracy, repeatability, and stabilization for the inspection of two-step variable valve lift module assemblies.

Wave Height Measurement System Based on Wind Wave Modeling (풍랑 모델링을 기반으로 한 실시간 파고 측정 시스템)

  • Lee, Jung-Hyun;Lee, Dong-Wook;Heo, Moon-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.166-172
    • /
    • 2012
  • The standard wave height measurement system is usually based on spectrum analysis for measuring wave height. The spectrum analysis is complicated because of the FFT, and the FFT is not for real time processing since it requires the saved data segments. In this paper, we carried out the performance evaluation of real-time and simpler wave height measurement system using the kalman filter and inertial sensors. The kalman filter theory is complicated, but its algorithm is simpler than the FFT and the kalman filter is used to estimate wave height by integrating acceleration data. But the accumulated error is occurred when the acceleration data is integrated. We developed the algorithm using the wind wave characteristic to decrease the accumulated error. In this paper, the performance evaluation of the wave height measurement system is carried out for various wind wave conditions. Through the experiments, we verified that it shows high measurement performance with the 3.5% margin of error in wind wave condition.

Effects of Fan-Aspirated Radiation Shield for Temperature Measurement in Greenhouse Environment

  • Yang, Seung-Hwan;Lee, Chun-Gu;Kim, Joon-Yong;Lee, Won-Kyu;Ashtinai-Araghi, A.;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.245-251
    • /
    • 2012
  • Purpose: Provision of accurate temperature measurement is an essential element to ensure a precise control in greenhouse environment. This study was organized to compare the effects of six solar radiation shields with different shapes for temperature measurement and find the most appropriate shield for greenhouse environment. Methods: A fan-aspirated radiation shield was designed and manufactured. Using the fan-aspirated radiation shield and five other shapes i.e., the cup shape, horizontal pipe, vertical pipe, parallel boards and commercial shields, temperature measurement was conducted over the lawn surface as well as greenhouse indoor environment. The measurement height varied at 0.5, 1.0 and 1.5 m from the floor. Results: The measured temperatures by the fan-aspirated radiation shield were 1.30-$1.49^{\circ}C$ lower than the values recorded by other different-shaped shields at 1.5 m of measurement height. As the measurement height decreases, observed differences between measured temperatures of the fan-aspirated radiation shield and other shields demonstrate a declining trend. However, at low measurement heights, the radiation emitted from the bottom surface would be the source of error in temperature measurement. Conclusions: The fan-aspirated radiation shield is a required tool for exact measurement of air temperature in greenhouse temperature control.

A Study on Measurement Accuracy of Theodolite System(II) -A Measurement Accuracy for a Height of Scale Bar (데오드라이트 시스템의 측정 정확도에 대한 연구(II) -기준자 측정 높이에 따른 측정 정확도)

  • 윤용식;이동주;정종길
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.37-43
    • /
    • 2004
  • A measurement accuracy of theodolite system may be affected by a measurement environment, a measurement distance change and so on. This study was performed for measuring an accuracy when the height of scale bar is changed 0.05m, 0.5m, 1m and 1.5m under the distance 3m between two theodolites, the distance 4m from the theodolite system to scale bar and the distance 5m from the thodolite system to the horizontal target bar. And we could know that the best height is 0.05m and 1m.