• Title, Summary, Keyword: Heliostat

Search Result 22, Processing Time 0.033 seconds

Compensation of Sun Tracking Error caused by the Heliostat Geometrical Error through the Canting of Heliostat Mirror Facets (반사거울 설치 방향 조정에 의한 Heliostat 기구오차에서 기인하는 태양추적오차의 보정)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.22-31
    • /
    • 2009
  • Canting is the optical alignment of mirror facets of heliostat such that the heliostat could focus the energy as a unit concentrator. Canting could improve the optical performance of heliostat and thus improves the efficiency of heliostat and ultimately improves the efficiency of the solar thermal power plant. This study discusses the effect of mirror canting, especially off-axis canting, used to compensate the sun tracking error caused by the heliostat geometrical errors. We first show that the canting could compensate the sun tracking error caused by the heliostat geometrical errors. Then we show that the proper canting time could exist, depending on the heliostat location. Finally we show how much the sun tracking performance could be improved by canting, by providing RMS sun tracking error. The limitation and caution of using canting to improve the sun tracking performance are also discussed.

Development of Heliostat Field Operational Algorithm for 200kW Tower Type Solar Thermal Power Plant (200kW 타워형 태양열발전시스템의 헬리오스타트 필드 운영 알고리즘 개발)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.33-41
    • /
    • 2014
  • Heliostat field in a tower type solar thermal power plant is the sun tracking mirror system which affects the overall efficiency of solar thermal power plant most significantly while consumes a large amount of energy to operate it. Thus optimal operation of it is very crucial for maximizing the energy collection and, at the same time, for minimizing the operating cost. Heliostat field operational algorithm is the logics to control the heliostat field efficiently so as to optimize the heliostat field optical efficiency and to protect the system from damage as well as to reduce the energy consumption required to operate the field. This work presents the heliostat field operational algorithm developed for the heliostat field of 200kW solar thermal power plant built in Daegu, Korea. We first review the structure of heliostat field control system proposed in the previous work to provide the conceptual framework of how the algorithm developed in this work could be implemented. Then the methodologies to operate the heliostat field properly and efficiently, by defining and explaining the various operation modes, are discussed. A simulation, showing the heat flux distribution collected by the heliostat field at the receiver, is used to show the usefulness of proposed heliostat field operational algorithm.

Development of Heliostat Aiming Point Allocation Scheme in Heliostat Field Control Algorithm for 200kW Tower Type Solar Thermal Power Plant (200kW 탑형 태양열발전시스템을 위한 헬리오스타트 필드 운영 알고리즘의 헬리오스타트 반사목표점 할당 방안 개발)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.21-29
    • /
    • 2014
  • Heliostat field control algorithm is the logics to operate the heliostat field of tower type solar thermal power plant and it could include various methodologies of how to control the heliostat field so as to optimize the energy collection efficiency as well as to reduce the system operating cost. This work, as the first part of the consecutive works, presents heliostat aiming mint allocation scheme which will be used in the heliostat field control algorithm for 200kW solar thermal power plant built in Daegu, Korea. We first discuss the structure of heliostat field control system required for the implementation of aiming scheme developed in this work. Then the methodologies to allocate the heliostat aiming points on the receiver are discussed. The simulated results show that the heliostat aiming point allocation scheme proposed in this work reduces the magnitude of peak heat flux on the receiver more than 40% from the case of which all the heliostats in the field aim at the center of receiver simultaneously. Also it shows that, when the proposed scheme is used, the degradation of heliostat field optical efficiency is relatively small from the maximal optical efficiency the heliostat field could have.

Design of Structure of Heliostat Reflective Surface for 200kW Tower Type Solar Thermal Power Plant (200kW 탑형 태양열발전시스템을 위한 Heliostat 반사면 구조 설계)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.53-62
    • /
    • 2011
  • Heliostat in the tower type solar thermal power plant is a sun tracking mirror system to reflect the solar energy to the receiver and the optical performance of it affects to the efficiency of whole power plant most significantly. Thus a proper design of structure of the heliostat reflective surface could be the most important step in the construction of such power plant. The work presented here is a design of structure of optical surface of heliostat, which will be used in 200kW solar thermal power plant. The receiver located at 43(m) high from ground in tower has $2{\times}2$(m) rectangular shape. We first developed the software tool to simulate the energy concentration characteristics of heliostat using the ray tracing technique. Then, the shape of heliostat reflective surface is designed with the consideration of heliostat's energy concentration characteristics, production cost and productivity. The designed heliostat's reflective surface has a structure formed by canting four of $1{\times}1$(m) rectangular flat plate mirror facet and the center of each mirror facet is located on the spherical surface, where the spherical surface is formulated by the mirror facet mounting frame.

Heliostat Control System (Heliostat 제어시스템)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.50-57
    • /
    • 2009
  • Heliostat in the tower type solar thermal power plant is a mirror system tracking the sun's movement to collect the solar energy and it is the most important subsystem determining the efficiency of solar thermal power plant. Thus a good performance of it, which is mostly the accurate sun tracking performance under the various hazardous operating condition, is required. Heliostat control system is a system to manage the heliostat sun tracking movement and other operations. It also communicates with the master controller through the heliostat filed control system to receive and send the informations required to operate the heliostat as a part of the solar thermal power plant. This study presents a heliostat control system designed and developed for the 1MW solar thermal power plant. We first define the functionality of heliostat control system. Then sun tracking controller as well as the sun tracking algorithm satisfying the required functionality have been developed. We tested the developed heliostat control system and it showed a good performance in regulation of heliostat motion and communication.

Analysis of Sun Tracking Error Caused by the Heliostat Driving Axis Geometrical Error Utilizing the Solar Ray Tracing Technique (태양광선 제적추적기법을 이용한 Heliostat 구동축 기구오차에서 기인하는 태양추적오차의 분석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.39-46
    • /
    • 2009
  • Heliostat, as a mirror system tracking the sun's movement, is the most important subsystem determining the efficiency of solar thermal power plant. Thus the accurate sun tracking performance under the various hazardous operating condition, is required. This study presents a methodology of development of the solar ray tracing technique and the application of it in the analysis of sun tracking error due to the heliostat geometrical errors. The geometrical errors considered here are the azimuth axis tilting error and the elevation axis tilting error. We first analyze the geometry of solar ray reflected from the heliostat. Then the point on the receiver, where the solar ray reflected from the heliostat is landed, is computed and compared with the original intended point, which represents the sun tracking error. The result obtained shows that the effect of geometrical error on the sun tracking performance is varying with time(season) and the heliostat location. It also shows that the heliostat located near the solar tower has larger sun tracking error than that of the heliostat located farther.

Analysis of Energy Concentration Characteristics of Heliostat used in 200kW Tower Type Solar Thermal Power Plant (200kW 탑형 태양열발전시스템에서 사용되는 Heliostat의 집열특성 분석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.80-88
    • /
    • 2011
  • Heliostat in the tower type solar thermal power plant is a sun tracking mirror system to reflect the solar energy to the receiver and the optical performance of it affects to the efficiency of whole power plant most significantly. Thus a solid understanding of heliostat's energy concentration characteristics is the most important step in designing of the heliostat field and the whole power plant. The work presented here is the analysis of energy concentration characteristics of heliostat used in 200kW solar thermal power plant, where the receiver located at 43m high in tower has $2{\times}2$m rectangular shape. The heliostat reflective surface is formed by 4 of $1{\times}1$m flat plate mirror facet and the mirror facet is mounted on the spherical frame. The direct normal incident radiation models in vernal equinox, summer solstice, autumnal equinox and winter solstice are first derived from the actually measured data. Then the intercept ratio, heat flux distribution and total energy collected at the receiver for the heliostats located in the various places of the heliostat field are investigated. Finally the effect of mirror facet installation error on the optical performance of the heliostat is analyzed.

Design of Heliostat Field for 200kW Tower Type Solar Thermal Power Plant (200kW 탑형 태양열발전시스템의 Heliostat Field 설계)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.41-51
    • /
    • 2012
  • Heliostat field is the most important subsystem in the tower type solar thermal power plant since its optical performance affects the total system efficiency most significantly while the construction cost of it is the major part of total construction cost in such a power plant. Thus a well designed heliostat field to maximize the optical efficiency as well as to minimize the land usage is very important. This work presents methodology, procedures and result of heliostat filed design for 200kW solar thermal power plant built recently in Daegu, Korea. A $2{\times}2(m)$ rectangular shaped receiver located at 43(m) high and tilted $28^{\circ}$ toward heliostat field, 450 of heliostats of which the reflective surface is formed by 4 of $1{\times}1(m)$ flat plate mirror facet, and the land area having about $140{\times}120(m)$ size are used to form the heliostat field. A procedure to deploy 450 heliostats in radial staggered nonblocking formation is developed. Also the procedures to compute the cosine effect, intercept ratio, blocking and shading ratio in the field are developed. Finally the heliostat filed is designed by finding the optimal radial distance and azimuthal spacing in radial staggered nonblocking formation such that the designed heliostat field optical efficiency could be maximized. The designed heliostat field has 77% of annual average optical efficiency, which is obtained by annually averaging the optical efficiencies computed between the time of where sun elevation angle becomes $10^{\circ}$ after sunrise and the time of where sun elevation angle becomes $10^{\circ}$ before sunset in each day.

Analysis of Heliostat Sun Tracking Error due to the Mirror Installation and Drive Mechanism Induced Errors (Heliostat 반사거울 설치 및 구동기구 유발 오차에 의한 태양추적오차의 해석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.1-11
    • /
    • 2009
  • Heliostat sun tracking accuracy could be the most important requirement in solar thermal power plant, since it determines the overall efficiency of power plant. This study presents the effect of geometrical errors on the heliostat sun tracking performance. The geometrical errors considered here are the mirror canting error, encoder reference error, heliostat position error. pivot offset and tilt error, gear backlash and mass unbalanced effect error. We first investigate the effect of each individual geometrical error on the sun tracking accuracy. Then, the sun tracking error caused by the combination of individual geometrical error is computed and analyzed. The results obtained using the solar ray tracing technique shows that the sun tracking error due to the geometrical error is varying almost randomly. It also shows that the mirror canting error is the most significant error source, while the encoder reference error and gear backlash are second and the third dominant source of errors.

Measurement and Compensation of Heliostat Sun Tracking Error Using BCS (Beam Characterization System) (광특성분석시스템(BCS)을 이용한 헬리오스타트 태양추적오차의 측정 및 보정)

  • Hong, Yoo-Pyo;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.502-508
    • /
    • 2012
  • Heliostat, as a concentrator to reflect the incident solar energy to the receiver, is the most important system in the tower-type solar thermal power plant since it determines the efficiency and ultimately the overall performance of solar thermal power plant. Thus, a good sun tracking ability as well as a good optical property of it are required. Heliostat sun tracking system uses usually an open loop control system. Thus the sun tracking error caused by heliostat's geometrical error, optical error and computational error cannot be compensated. Recently use of sun tracking error model to compensate the sun tracking error has been proposed, where the error model is obtained from the measured ones. This work is a development of heliostat sun tracking error measurement and compensation method using BCS (Beam Characterization System). We first developed an image processing system to measure the sun tracking error optically. Then the measured error is modeled in linear polynomial form and neural network form trained by the extended Kalman filter respectively. Finally error models are used to compensate the sun tracking error. We also developed the necessary image processing algorithms so that the heliostat optical properties such as maximum heat flux intensity, heat flux distribution and total reflected heat energy could be analyzed. Experimentally obtained data shows that the heliostat sun tracking accuracy could be dramatically improved using either linear polynomial type error model or neural network type error model. Neural network type error model is somewhat better in improving the sun tracking performance. Nevertheless, since the difference between two error models in compensation of sun tracking error is small, a linear error model is preferred in actual implementation due to its simplicity.