• Title, Summary, Keyword: Hilbert space contraction semigroups

Search Result 3, Processing Time 0.023 seconds

APPLICATIONS OF HILBERT SPACE DISSIPATIVE NORM

  • Kubrusly, Carlos S.;Levan, Nhan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.99-107
    • /
    • 2012
  • The concept of Hilbert space dissipative norm was introduced in [8] to obtain necessary and sufficient conditions for exponential stability of contraction semigroups. In the present paper we show that the same concept can also be used to derive further properties of contraction semigroups, as well as to characterize strongly stable semigroups that are not exponentially stable.

ON THE STRONG CONVERGENCE THEOREMS FOR ASYMPTOTICALLY NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

  • Chang, Shih-Sen;Zhao, Liang Cai;Wu, Ding Ping
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.13-23
    • /
    • 2009
  • Some strong convergence theorems of explicit iteration scheme for asymptotically nonexpansive semi-groups in Banach spaces are established. The results presented in this paper extend and improve some recent results in [T. Suzuki. On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proc. Amer. Math. Soc. 131(2002)2133-2136; H. K. Xu. A strong convergence theorem for contraction semigroups in Banach spaces, Bull. Aust. Math. Soc. 72(2005)371-379; N. Shioji and W. Takahashi. Strong convergence theorems for continuous semigroups in Banach spaces, Math. Japonica. 1(1999)57-66; T. Shimizu and W. Takahashi. Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211(1997)71-83; N. Shioji and W. Takahashi. Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. TMA, 34(1998)87-99; H. K. Xu. Approximations to fixed points of contraction semigroups in Hilbert space, Numer. Funct. Anal. Optim. 19(1998), 157-163.]

  • PDF

A GENERAL VISCOSITY APPROXIMATION METHOD OF FIXED POINT SOLUTIONS OF VARIATIONAL INEQUALITIES FOR NONEXPANSIVE SEMIGROUPS IN HILBERT SPACES

  • Plubtieng, Somyot;Wangkeeree, Rattanaporn
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.717-728
    • /
    • 2008
  • Let H be a real Hilbert space and S = {T(s) : $0\;{\leq}\;s\;<\;{\infty}$} be a nonexpansive semigroup on H such that $F(S)\;{\neq}\;{\emptyset}$ For a contraction f with coefficient 0 < $\alpha$ < 1, a strongly positive bounded linear operator A with coefficient $\bar{\gamma}$ > 0. Let 0 < $\gamma$ < $\frac{\bar{\gamma}}{\alpha}$. It is proved that the sequences {$x_t$} and {$x_n$} generated by the iterative method $$x_t\;=\;t{\gamma}f(x_t)\;+\;(I\;-\;tA){\frac{1}{{\lambda}_t}}\;{\int_0}^{{\lambda}_t}\;T(s){x_t}ds,$$ and $$x_{n+1}\;=\;{\alpha}_n{\gamma}f(x_n)\;+\;(I\;-\;{\alpha}_nA)\frac{1}{t_n}\;{\int_0}^{t_n}\;T(s){x_n}ds,$$ where {t}, {${\alpha}_n$} $\subset$ (0, 1) and {${\lambda}_t$}, {$t_n$} are positive real divergent sequences, converges strongly to a common fixed point $\tilde{x}\;{\in}\;F(S)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)\tilde{x},\;x\;-\;\tilde{x}{\rangle}\;{\leq}\;0$ for $x\;{\in}\;F(S)$.